Open Review

Pattern formation mechanisms in sphere-forming diblock copolymer thin films

Leopoldo R. Gómez, Nicolás A. García, Richard A. Register, Daniel A. Vega


The order-disorder transition of a sphere-forming block copolymer thin film was numerically studied through a Cahn-Hilliard model. Simulations show that the fundamental mechanisms of pattern formation are spinodal decomposition and nucleation and growth. The range of validity of each relaxation process is controlled by the spinodal and order-disorder temperatures. The initial stages of spinodal decomposition are well approximated by a linear analysis of the evolution equation of the system. In the metastable region, the critical size for nucleation diverges upon approaching the order--disorder transition, and reduces to the size of a single domain as the spinodal is approached. Grain boundaries and topological defects inhibit the formation of superheated phases above the order--disorder temperature. The numerical results are in good qualitative agreement with experimental data on sphere-forming diblock copolymer thin films.

Received: 22  August 2017,  Accepted: 12 December 2017; Edited by: R. Dickman;  Reviewed by: A. Peters, Dept. Chemical Engineering, Louisiana Tech Univ., Ruston, USA; DOI:

Cite as: L R Gómez, N A García, R A Register, D A Vega, Papers in Physics 10, 100001 (2018)

This paper, by L R Gómez, N A García, R A Register, D A Vega, is licensed under the Creative Commons Attribution License 4.0.


Block Copolymer, Thin Films, Phase Transition, Self-assembly


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Papers in Physics. All content is licensed under the Creative Commons Attribution 3.0 Licence.