[1] I W Hamley, The physics of block copolymers, Oxford University Press (1998).

[2] F S Bates, G H Fredrickson, Block copolymers-designer soft materials, Phys. Today 52, 32 (1999).

[3] I W Hamley, Nanostructure fabrication using block copolymers, Nanotechnology 14, R39 (2003).

[4] T P Lodge, Block copolymers: past successes and future challenges, Macromol. Chem. Phys. 204, 265 (2003).

[5] A V Ruzette, L Leibler, Block copolymers in tomorrow's plastics, Nat. Mater. 4, 19 (2005).

[6] R A Segalman, Patterning with block copolymer thin films, Mat. Sci. Eng. R, 48, 191 (2005).

[7] S B Darling, Directing the self-assembly of block copolymers, Prog. Polym. Sci. 32, 1152 (2007).

[8] H C Kim, S M Park, W D Hinsberg, Block copolymer based nanostructures: Materials, processes, and applications to electronics, Chem. Rev. 110, 146 (2010).

[9] C M Bates, M J Maher, D W Janes, C J Ellison, C G Willson, Block copolymer lithography, Macromolecules 47, 2 (2014).

[10] M J Fasolka, A M Mayes, Block copolymer thin films: Physics and applications, Annu. Rev. Mater. Res. 31, 323 (2001).

[11] C Harrison, D H Adamson, Z D Cheng, J M Sebastian, S Sethuraman, D A Huse, R A Register, P M Chaikin, Mechanisms of ordering in striped patterns, Science 290, 1558 (2000).

[12] C Harrison, Z D Cheng, S Sethuraman, D A Huse, P M Chaikin, D A Vega, J M Sebastian, R A Register, D H Adamson, Dynamics of pattern coarsening in a two-dimensional smectic system, Phys. Rev. E 66, 011706 (2002).

[13] M L Trawick, M Megens, C Harrison, D E Angelescu, D A Vega, P M Chaikin, R A Register, D H Adamson, Correction for piezoelectric creep in scanning probe microscopy images using polynomial mapping, Scanning 25, 1 (2003).

[14] A P Marencic, M W Wu, R A Register, P M Chaikin, Orientational order in sphere-forming block copolymer thin films aligned under shear, Macromolecules 40, 7299 (2007).

[15] A P Marencic, D H Adamson, P M Chaikin, R A Register, Shear alignment and realignment of sphere-forming and cylinder-forming block-copolymer thin films, Phys. Rev. E 81, 011503 (2010).

[16] C Harrison, D E Angelescu, M Trawick, Z D Cheng, D A Huse, P M Chaikin, D A Vega, J M Sebastian, R A Register, D H Adamson, Pattern coarsening in a 2D hexagonal system, Europhys. Lett. 67, 800 (2004).

[17] D A Vega, C K Harrison, D E Angelescu, M L Trawick, D A Huse, P M Chaikin, R A Register, Ordering mechanisms in two-dimensional sphere-forming block copolymers, Phys. Rev. E 71, 061803 (2005).

[18] L R Gomez, E M Valles, D A Vega, Lifshitz-Safran coarsening dynamics in a 2D hexagonal system, Phys. Rev. Lett. 97, 188302 (2006).

[19] N A Garcia, R A Register, D A Vega, L R Gomez, Crystallization dynamics on curved surfaces, Phys. Rev. E 88, 012306 (2013).

[20] W Li, F Qiu, Y Yang, A C Shi, Ordering dynamics of directed self-assembly of block copolymers in periodic two-dimensional fields, Macromolecules 43, 1644 (2010).

[21] P M Chaikin, T C Lubensky, Principles of condensed matter physics, Cambridge University Press (1995).

[22] P G Debenedetti, Metastable liquids, Princeton University Press (1996).

[23] J M Sebastian, C Lai, W W Graessley, R A Register, Steady-shear rheology of block copolymer melts and concentrated solutions: Disordering stress in body-centered-cubic systems, Macromolecules 35, 2707 (2002).

[24] D E Angelescu, C K Harrison, M L Trawick, R A Register, P M Chaikin, Two-dimensional melting transition observed in a block copolymer, Phys. Rev. Lett. 95, 025702 (2005).

[25] D E Angelescu, J H Waller, D H Adamson, P Deshpande, S Y Chou, R A Register, P M Chaikin, Macroscopic orientation of block copolymer cylinders in single-layer films by shearing, Adv. Mater. 16, 1736 (2004).

[26] D E Angelescu, J H Waller, R A Register, P M Chaikin, Shear-induced alignment in thin films of spherical nanodomains, Adv. Mater. 17, 1878 (2005).

[27] A Adland, Y Xu, A Karma, Unified theoretical framework for polycrystalline pattern evolution, Phys. Rev. Lett. 110, 265504 (2013).

[28] G H Fredrickson, F S Bates, Dynamics of block copolymers: Theory and experiment Annu. Rev. Mater. Sci. 26, 501 (1996).

[29] M Doi, S F Edwards, The theory of polymer dynamics, Clarendon Press (1986).

[30] D A Vega, J M Sebastian, Y L Loo, R A Register, Phase behavior and viscoelastic properties of entangled block copolymer gels, J. Polym. Sci. Part B: Polym. Phys. 39, 2183 (2001).

[31] L Leibler, Theory of microphase separation in block copolymers, Macromolecules 13, 1602 (1980).

[32] T Ohta, K Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules 19, 2621 (1986).

[33] M Serral, M Pinna, A V Zvelindovsky, J B Avalos, Cell dynamics simulations of sphere-forming diblock copolymers in thin films on chemically patterned substrates, Macromolecules 49, 1079 (2016).

[34] I W Hamley, Cell dynamics simulations of block copolymers, Macromol. Theory Simul. 9, 363 (2000).

[35] S R Ren, I W Hamley, Cell dynamics simulations of microphase separation in block copolymers, Macromolecules 34, 116 (2001).

[36] N Provatas, K Elder, Phase-field methods in material science and engineering, Wiley (2010).

[37] L R Gomez, D A Vega, Amorphous precursors of crystallization during spinodal decomposition, Phys. Rev. E 83, 021501 (2011).

[38] Y Guo, J Zhang, B Wang, H Wu, M Sun, J Pan, Microphase transitions of block copolymer/homopolymer under shear flow, Condens. Matter Phys. 18, 23801 (2015).

[39] A D Pezzutti, L R Gomez, D A Vega, Smectic block copolymer thin films on corrugated substrates, Soft Matter 11, 2866 (2015).

[40] S K Mkhonta, K R Elder, Z F Huang, Emergence of chirality from isotropic interactions of three length scales, Phys. Rev. Lett. 116, 205502 (2016).

[41] T Ohta, Y Enomoto J L Harden, M Doi, Anomalous rheological behavior of ordered phases of block copolymers. 1, Macromolecules 26, 4928 (1993).

[42] M Nonomura, Stability of the fcc structure in block copolymer systems, J. Phys.: Condens. Matter 20, 465104 (2008).

[43] K Yamada, S Komura, The dynamics of order-order phase separation, J. Phys.: Condens. Matter 20, 155107 (2008).

[44] R Choksi, X Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers, J. Stat. Phys. 113, 151 (2003).

[45] A A Abate, G T Vu, A D Pezzutti, N A Garcia, R L Davis, F Schmid, R A Register, D A Vega, Shear-aligned block copolymer monolayers as seeds to control the orientational order in cylinder-forming block copolymer thin films, Macromolecules 49, 7588 (2016).

[46] G J A Sevink, Rigorous embedding of cell dynamics simulations in the Cahn-Hilliard-Cook framework: Imposing stability and isotropy, Phys. Rev. E 91, 053309 (2015).

[47] J Nickolls, I Buck, M Garland, K Skadron, Scalable parallel programming with CUDA, ACM Queue 6, 40 (2008).

[48] NVIDIA, CUDA Programming Guide 8.0, http://docs.nvidia.com/cuda/ (2017).

[49] D A Vega, L R Gomez, Spinodal-assisted nucleation during symmetry-breaking phase transitions, Phys. Rev. E 79, 051607 (2009).

[50] A D Pezzutti, L R Gomez, M A Villar, D A Vega, Defect formation during a continuous phase transition, Europhys. Lett. 87, 66003 (2009).

[51] J W Cahn, The later stages of spinodal decomposition and the beginnings of particle coarsening, Acta Met. 14, 1685 (1966).

[52] J S Langer, M Bar-on, H D Miller, New computational method in the theory of spinodal decomposition, Phys. Rev. A 11, 1417 (1975).

[53] J W Cahn, J E Hilliard, Free energy of a nonuniform system. I Interfacial free energy, J. Chem. Phys. 28, 258 (1958).

[54] M Hillert, A solid-solution model for inhomogeneous systems, Acta Met. 9, 525 (1961).

[55] I M Lifshitz, V V Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19, 35 (1961).

[56] A J Bray, Theory of phase-ordering kinetics, Adv. Phys. 43, 357 (1994).

[57] Y Oono, S Puri, Computationally efficient modeling of ordering of quenched phases, Phys. Rev. Lett. 58, 836 (1987).

[58] Y Oono, M Bahiana, 2/3-Power law for copolymer lamellar thickness implies a 1/3-power law for spinodal decomposition, Phys. Rev. Lett. 61, 1109 (1988).

[59] F Liu, N Goldenfeld, Dynamics of phase separation in block copolymer melts, Phys. Rev. A 39, 4805 (1989).

[60] M Bahiana, Y Oono, Cell dynamical system approach to block copolymers, Phys. Rev. A 41, 6763 (1990).

[61] Y Yokojima, Y Shiwa, Hydrodynamic interactions in ordering process of two-dimensional quenched block copolymers, Phys. Rev. E 65, 056308 (2002).

[62] C Sagui, R C Desai, Kinetics of topological defects in systems with competing interactions, Phys. Rev. Lett. 71, 3995 (1993).

[63] C Sagui, R C Desai, Late-stage kinetics of systems with competing interactions quenched into the hexagonal phase, Phys. Rev. E 52, 2807 (1995).

[64] L R Gomez, E M Valles, D A Vega, Effect of thermal fluctuations on the coarsening dynamics of 2D hexagonal system, Physica A 386, 648 (2007).
https://doi.org/10.1016/j.physa.2007.08.056 ';

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Papers in Physics. All content is licensed under the Creative Commons Attribution 3.0 Licence.