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Wavelet q-extropies of fractal signals

Julio César Ramı́rez Pacheco1*, Joel Antonio Trejo Sánchez2†, Luis Rizo Domı́nguez3‡

The standard Tsallis and Rényi extropies of parameter q are extended to the time-scale domain, and
closed-form expressions of these extropies for fractal signals of parameter α are obtained. Wavelet
extropy planes are computed for a range of the fractality parameter α and signal length N which
allows an unveiling of the properties and potential applications of wavelet q-extropies on fractals.
Results indicate that wavelet q-extropies allow accurate description of the complexities of fractals
since they are maximum for completely random samples, decreasing for correlated fractals and in-
creasing for uncorrelated fractals. Unlike Shannon and Rényi, Tsallis extropies display a constant
region, symmetric on α, which allows classification of fractals based on a simple heuristic of wavelet
extropy values. Finally, the application of wavelet Tsallis extropies allows the differentiation of elec-
troencephalogram (EEG) times series from volunteers with eyes closed and eyes open.

I Introduction

Information theory quantifiers such as Shannon, Tsa-
llis and Rényi entropies are employed in the litera-
ture to quantify the complexity and information con-
tent of a variety of real world data. For instance, Tsa-
llis entropies have been used to study the complexi-
ties associated with electroencephalogram (EEG) sig-
nals [1], structural damage identification [2] and for
analizing event-related potentials in neuroelectrical sig-
nals [3, 4], to name but a few. Although entropies are
usually computed using the raw measured signals (time-
domain) they can also be computed in other representa-
tions of the signal such as their Fourier domain (spec-
tral entropies) and their time-scale domain (wavelet
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entropies). Wavelet entropy [5–7], wavelet (q, q′)-
entropies [8] and wavelet Fisher’s informations [9, 10]
have made the application of information-theory quan-
tifiers more widespread in the literature. Wavelet Tsal-
lis entropies, e.g., have been used for general stochastic
processes [11], fractal signal classification [12], detec-
tion of level-shifts in fractal time series [13] and for the
characterization of energy prices [14]. Further infor-
mation theory quantifiers include, but are not limited
to, Fisher-Shannon information planes [15], LMC com-
plexity [16] and the more recent Fractal Belief Rényi
(FBR) divergence [17] and higher order fractal belief
Rényi divergence (HOFBeRD)[18], employed in pa-
ttern classification to measure discrepancy and expected
to be applied in the complexity analysis of electroen-
cephalogram data to detect migraine and depression. In
addition, Quantum X-entropy [19] is being proposed to
measure uncertainty and is expected to make a profound
contribution in biological signal analysis. Recently, the
extropy concept has been proposed in the literature. Ex-
tropy, according to Lad and co-workers [20], is a com-
plementary dual of information entropy and may pro-
vide valuable and complementary information about the
complexity of a signal. Tsallis, Rényi and Ginni ex-
tropies have been studied in [21–23] along with some
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applications to some theoretical probability functions.
Extropies are a recent development and are currently
considered as a research hotspot in statistics. In this
contribution, wavelet Rényi and Tsallis q-extropies of
fractal signals are obtained, and, likewise, wavelet Tsal-
lis q-entropies for these signals were computed. More-
over, extropy planes are obtained and the characteristics
for fractal signals studied in some detail. Furthermore,
based on these planes, it is possible to claim which in-
formation extropy is more suitable for the analysis of
fractals and highlight potential applications. The rest
of the paper is structured as follows: Section II briefly
overviews the concept of wavelets and the wavelet anal-
ysis of fractal signals of parameter α. Important results
on wavelet analysis of fractal signals are highlighted
along with definitions that are essential for the under-
standing of the rest of the article. Later, Section III
presents the main contributions of the article, which are
the wavelet Rényi and Tsallis q-extropies of fractal sig-
nals. In addition, extropy planes are obtained for each
quantifier and, based on these, a complete characteri-
zation of these extropies for fractals is presented. Fur-
thermore, potential applications are highlighted in this
section. Finally, Section IV presents the conclusions of
the paper.

II Materials and methods

Extropies obtained in this contribution are based on
wavelets, therefore a brief discussion of the wavelet
analysis of fractals signals is presented.

i Wavelet analysis of fractals

Wavelet transforms play a special role in the analysis of
signals in physics [24] and other scientific areas [25,26].
Wavelet transforms can be categorized based on the na-
ture of the scaling and shifting procedures as continuous
wavelet transforms (CWT) and discrete wavelet trans-
forms (DWT). The DWT of a signal Xt is given by:

dX(j, k) =

∫ ∞

−∞
Xt ψj,k(t) dt, (1)

where ψj,k(t) = 2−j/2ψ(2−jt − k) is a dyadically
scaled and integer-translated mother wavelet ψ(t). For
fractal signals, the first and second order moments of
the DWT are of primary importance. The first moment

is defined as follows,

EdX(j, k) = 2−j/2

∫ ∞

−∞
X(t)ψ(2−jt− k)dt, (2)

while the second, also known in the literature as the
wavelet spectrum [27], takes the form

Ed2X(j, k) =

∫ ∞

−∞
SX(2−jf)|Ψ(f)|2 df, (3)

where Ψ(f) =
∫
ψ(t)e−j2πft dt is the Fourier trans-

formation of ψ(t), SX(.) is the power spectral density
(PSD) of the process Xt and E the expectation opera-
tor. For fractals, the PSD is Sx(f) ∼ c|f |−α and thus
substituting this well-known PSD into Eq. (3) results in
the wavelet spectrum of fractals signals of parameter α
[27], i.e.,

Ed2X(j, k) = C2jα, (4)

where C is a constant. From equation (4), the wavelet
energy at scale j can be computed as [6],

pj =
Ed2X(j, k)∑
j Ed2X(j, k)

. (5)

Wavelet energy pj satisfies the axioms of probability,
i.e., 0 ≤ pj ≤ 1,

∑
j pj = 1 and is therefore a prob-

ability mass function (pmf) which represents the prob-
ability that the energy of a signal is at wavelet scale j.
From the wavelet energy pj , many statistical quantities
can be computed including Shannon entropy, Tsallis ex-
tropies, Rényi extropies and other information theory
quantifiers such as Fisher-Shannon information planes,
among others. For fractal signals, the wavelet energy,
pj , is given by,

pj = 2(j−1)α × 1− 2α

1− 2αN
, (6)

where α is the fractality parameter andN is the number
of scales considered within a signal. For further infor-
mation on wavelets, the interested reader may refer to
[24, 25, 28, 29] and for the analysis and estimation of
fractals refer to [30–32].

ii Information theory quantifiers

Entropy measures the information content or uncer-
tainty of a random signal or system. Several infor-
mation measures have been proposed in the literature
and can be classified in a general sense as extensive or
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nonextensive. Shannon entropy is an extensive entropy
and is appropriate for stationary signals with no correla-
tion structure, short-range forces, and which is defined
as

H(p) = −
∑
j

pj log(pj), (7)

where pj is a pmf. Rényi entropy is also extensive but
provides a parameter q which adds flexibility and the
possibility of adjusting the analyses with q. It is defined
as

HR
q (p) =

log(
∑N

j=1 pj1)

1− q
, (8)

where q ̸= 1. Tsallis entropy, on the oher hand, is a
nonextensive entropy and is appropriate for signals with
long-range forces, long-range interactions and nonsta-
tionary signals. The Tsallis entropy of parameter q is
defined as

HT
q (p) =

1−∑N
j=1 p

q
j

q − 1
. (9)

Rényi and Tsallis entropies converge to Shannon en-
tropy when q → 1 but they are not related to each other.
Extensive and non-extensive entropies can be further
extended if entropies are computed in a different rep-
resentation of the signal. For instance, when the en-
tropies are computed in a wavelet-based representation
of the signal by means of the wavelet spectrum, then
they are called wavelet entropies. Wavelet-based in-
formation quantifiers have shown to be appropriate for
the analysis of fractal signals [5, 6] and several analysis
frameworks based on them have been proposed.

iii Information extropies

Recently, the concept of extropy has been introduced
as a complementary dual of Shannon entropy [20]. Ex-
tropy can further complement the analysis based on en-
tropy and provide valuable information in the analysis
of a phenomena. For a pmf pj , extropy is defined as

J (p) = −
∑
j

(1− pj) log2(1− pj). (10)

Rényi extropy is a complementary dual of Rényi en-
tropy [22]. Rényi extropy extends the extropy concept
by providing an additional parameter q which adds flex-

ibility. Rényi extropy is defined as

J R
q (p) =

−(N − 1) log(N − 1)

1− q

+
(N − 1) log

(∑N
j=1 (1− pj)

q
)

1− q
, (11)

and when q → 1, Shannon extropy results. Tsallis ex-
tropy is a complementary dual of Tsallis entropy. Tsal-
lis extropy is defined for a pmf pj as

J T
q (p) =

N − 1−∑N
j=1 (1− pj)

q

q − 1
. (12)

When q → 1 Shannon extropy results. Several other
extropy meausures have been proposed in the literature,
such as Ginni extropy [23] and belief eXtropy [33] as
well as applications in pattern recognition [34] and al-
gorithms for estimating extropy from data [35]. The
main result of the present contribution is to propose
wavelet q-extropies and to characterize these extropies
for fractal signals of parameter α. As a matter of fact,
wavelet Shannon extropy or simply wavelet extropy is
obtained by direct application of Eq. (6) into Eq. (10)
which results in,

J (p) =

∞∑
n=1

(−1)n−1

n

(
2α − 1

1− 2αM

)n

×
{

1− 2α

1− 2αM
1− 2(α+αn)M

1− 2(α+αn)
− 1− 2αnM

1− 2αn

}
.

(13)

This expression permits characterization of complexi-
ties of fractals of parameter α. In the following, wavelet
q-extropies are obtained by direct application of Eq. (6)
into Eq. (11) and (12).

III Results and discussion

Wavelet Tsallis q-extropy is obtained by direct applica-
tion of (4) into Eq. (12) which gives

J T
q (p) =

1

q − 1
×
{
N − 1−

q∑
k=0

(
1− 2αkN

1− 2αk

)

×
(

2α − 1

1− 2αN

)k (
q

k

)}
. (14)

From this equation, properties and applications may be
identified via the so-called extropy planes, which are
defined as follows:
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Figure 1: Wavelet Tsallis q-extropy of fractal signals. Top
plot represents wavelet extropy (Tsallis extropy when q → 1)
and bottom plot wavelet Tsallis q-extropy with q = 15. Both
information planes are computed with α ∈ (−4, 4) and N ∈
(5, 15) to account for the effect of length in a range of the
fractality exponent.

Definition 1 A q-extropy plane Eq is defined as a 3D
surface plot of extropy values (computed using Tsallis
or Rényi functionals) versus fractality parameter α and
signal length N .

Tsallis- q-extropy planes allow the characterization of
the complexities of fractal signals and unveil poten-
tial applications. Fig. 1 shows the wavelet Tsallis q-
extropy planes of fractal signals within the fractality
range α ∈ (−4, 4) and signal lengths ranging from
N = 25 to N = 215.

Top plot corresponds to the case q = 1, which rep-
resents wavelet Shannon extropy, while the bottom plot
is the wavelet Tsallis extropy for the nonextensivity pa-
rameter set to q = 15. From Fig. 1, it is observed that
for completely random fractals (α = 0), extropies are
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Figure 2: Wavelet tsallis q-extropy. Top plot shows the effect
of the nonextensivity parameter q on the shape and character-
istics of Tsallis extropies. Bottom plot shows a 2D compari-
son of Tsallis q-extropies and Tsallis q-entropies for the case
q = 15.

maximum, increasing whenα < 0 and decreasing when
α > 0. In addition, for small q,

J (p) > J T
q (p) ∀α ∈ R, (15)

and as observed from the figure, signal length N has
little or no effect on extropies values. Fig. 2 further
studies the effect of nonextensivity parameter q on the
form of extropies of fractal signals.

Top plot displays Tsallis extropies for various q and
it is easily observed that for various qj (qj small), the
following is satisfied,

J T
q1(p) > J T

q2(p), ∀α ∈ R, (16)

as long as q1 < q2. This means that for increasing q,
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Figure 3: Wavelet Tsallis q-entropy HT
q1(p) (q1 = 15) and

Wavelet Tsallis q-extropy J T
q2(p) (q2 = 100) plots within the

fractality range α ∈ (−4, 4) and signal length N = 210.

Tsallis q-extropies are narrower up to point qI , at which
point extropies begin to be wider. However, as noted in
this plot, when q ≥ 5 this narrowness is not significant.
Bottom plot of Fig. 2 shows a comparison of Tsallis q-
extropy and Tsallis q-entropy for q = 15. From this
plot, it is observed that,

J T
q (p) < HT

q (p) ∀α ∈ R, (17)

which means that Tsallis entropy is greater than Tsallis
extropy in all the fractality range for all q. Fig. 3 shows
a complementary comparison of Tsallis entropy and ex-
tropy when constant behaviour of entropies/extropies
are observed. Tsallis entropies are obtained for q1 = 15
and Tsallis extropies for q2 = 100.

The constant extropy/entropy values are symmetrical
to α = 0 and these behaviours can be used for the clas-
sification of fractal signals. This constant range permits
some fractal signals to be considered as white noise,
while signals lying outside this range are considered
correlated or noncorrelated fractals. By increasing the
non-extensivity parameter in Tsallis extropies a wider
constant region is observed and a different classification
of fractal families may be achieved. Rényi extropies
on the other hand, are obtained by direct application of
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Figure 4: Wavelet Rényi q-extropy plane (top plot) for q =
15 in the fractality range α ∈ (−4, 4) and varying length.
Bottom plot displays Wavelet extropies compared: wavelet
extropy J (p), wavelet Tsallis q-extropy J T

q (p)(q = 15) and
wavelet Rényi q-entropy J R

q (p) (q = 15).

Eq. (6) into Eq. (11), which results in

J R
q (p) =

{
(N − 1) log

(
q∑

k=0

(
1− 2αNk

1− 2αk

)
×

(
2α − 1

1− 2αN

)k (
q

k

))
− (N − 1)×

log(N − 1)

}
× 1

1− q
. (18)

Eq. (18) represents the wavelet Rényi extropy for fractal
signals of parameter α.

Fig. 4 shows the Rényi information plane (top plot)
for fractal signals in the scaling range α ∈ (−4, 4) and
signal length from 25 to 215. Note from this plot that
Rényi extropies are maximum for α = 0 (white noise),
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Figure 5: Heuristic for the classification of fractal signals with
wavelet Tsallis q-extropies. Classification is perfomed based
on constant/variable regions. If the process’ variance is small,
then it is considered a fractal belonging to the constant region,
but if the variance is higher than some threshold, then it is
considered a fractal belonging to the outside region.

increasing for noncorrelated fractals (α < 0) and de-
creasing for correlated ones (α > 0). In addition, Rényi
extropies for fractals signals are independent of signal
length N . Bottom plot of Figure 4 shows a compari-
son of wavelet extropy, Tsallis q-extropy and Rényi q-
extropy (with identical q for q-extropies). From this plot
it is easily observed that,

J (p) > J T
q (p) > J R

q (p). (19)

In addition,

J R
q1 (p) > J R

q2 (p), ∀α ∈ R (20)

for all q1 < q2. In constrast to wavelet Tsallis q-
extropies, wavelet Rényi q-extropies do not have a cons-
tant region of extropies in some fractality range for a
given q. This result is similar to those observed for stan-
dard wavelet q-entropies where the only entropy with
constant regions is the wavelet Tsallis entropy. Accor-
dingly, few applications of wavelet Rényi q-extropies
can be mapped to fractal signals; however, it is a good
descriptor of the complexities associated with fractal
signals.

i Classification of fractals

As stated above, an example application of Tsallis q-
extropies is in the classification of fractals. For this,

Tsallis q-extropies must display a constant region. This
constant region is observed on |α| < αC and there-
fore fractals within this interval experience small ex-
tropy variance while fractals whose fractality parame-
ter is outside this interval experience longer variance.
A simple heuristic for classifying fractals is therefore
based on the observed variance of extropy values, small
or no variance indicating a fractal signal lying in the
class of fractals with parameter |α| < αC and extropies
with significant variance indicating pertinence to the
class of fractals outside |α| < αC . Fig. 5 shows this
heuristic based on the behaviour of extropies within the
constant and nonconstant region in the wavelet Tsallis
extropy plane. An interesting question is that which re-
gards the length of the constant region for a specific q,
or, equivalently, if q has some specific value, regarding
which type of fractal can be discerned. Fig. 6 displays
the relationship between extropic index q and upper-
bound of constant region |α| < αC . For instance, if
q = 150 then it can classify fractals lying in the inter-
val |α| < 0.4, and when q = 250 a classification of
processes in |α| < 0.5 may be achieved. An additional
level of classification may be obtained if the RWE is
computed in another way.

ii Application to EEG signals

Wavelet Tsallis q-extropy can be employed for the ana-
lysis of complex fractal time series. In the following,
EEG times series from [40] are briefly analyzed. The
data consists of 100 surface EEG signals from healthy
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Figure 6: Relationship between extropic index q and upper
bound of constant interval |α| < αC
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Figure 7: Wavelet Tsallis q-extropy calculation from surface
EEG data with eyes open and eyes closed.

volunteers with eyes open and 100 with eyes closed.
The experiment consists in only computing Tsallis q-
extropy (q = 300) to every signal and then plotting the
results. Fig. 7 shows the results, and, as can be observed
at first glance, EEG time series from volunteers with
eyes closed experience a higher Tsallis extropy value
than those EEG time series from volunteers with eyes
open. This means that the fractality parameter is near
α = 0.5, meaning the process is less correlated. Volun-
teers with eyes open therefore have a higher fractality
parameter.

IV Conclusions

In this article, wavelet q-extropies of fractal signals
were obtained by computing standard q-extropies on a
time-scale representation of fractals. Closed-form ex-
pressions of wavelet Tsallis q-extropies and wavelet
Rényi q-extropies were obtained and, based on these,
extropy planes were computed. Extropy information
planes allowed not only examination of the properties
of these extropies, but also enabled the study of their re-
lationships and, specifically, the relationship with stan-
dard wavelet q-entropies. Moreover, these planes al-
lowed the highlighting of an example application of
wavelet Tsallis q-extropies, specifically in the classifi-
cation of fractal signals. Finally, the paper presented
a simple application of wavelet Tsallis q-extropies for
analysing EEG data.
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