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Random walks on random networks of cliques:
Inferring the network structure

A Nannini'; D H Zanette'”'

We study the properties of discrete-time random walks on networks formed by randomly

interconnected cliques, namely, random networks of cliques.

Our purpose is to derive

the parameters that define the network structure—specifically, the distribution of clique
size and the abundance of inter-clique links—from the observation of selected statistical
features along the random walk. To this end, we apply a Bayesian approach based on
recording the times spent by the walker inside successively visited cliques. The procedure
is illustrated with some numerical examples of diverse complexity, where the relevant
structural parameters are successfully recovered.

I Introduction

Formally proposed more than two decades ago [1],
network exploration is by now a well-established
procedure for disclosing the structure of relational
patterns in a wide variety of complex systems, cov-
ering biological and social community detection
and identification [2, 3], survey of economic (com-
mercial, industrial and financial) complexes [4], and
big-data mining [5], among many other real-life ap-
plications. Suitably defined stochastic processes—
concretely, random walks endowed with the capac-
ity of recording selected features of their trajecto-
ries [6, 7]—have been pinpointed as a tool to effi-
ciently explore such intricate structures.

In this contribution, we consider random walks
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evolving on a specific class of networks, namely,
random networks of cliques. These networks are
formed by small groups of fully interconnected
nodes—the cliques—with more sparse, random
connections between different groups. They have
been introduced as a stylized model of interac-
tion patterns with highly clustered architecture, for
which many structural properties can be exactly
computed [8]. Our main aim is to relate the statisti-
cal properties of the random walk to the structural
features of the underlying network, both analyti-
cally and numerically, with the ultimate purpose of
deriving the latter from the former.

In the next section, we recall the construction
of random networks of cliques and review some of
their structural features, which are necessary for
our subsequent analysis. In Section III, random-
walk statistical properties are analytically derived
from those structural features. In Section IV, we
study the inverse problem of deriving the network
structure from the observation of the random walk,
using a Bayesian inference approach. Three illus-
trative numerical examples are presented. Finally,
we draw our conclusions in Section V.
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IT Random
(RNoCs)

networks of cliques

A random network of cliques (RNoC) is built by
first constructing @ cliques. We recall that a clique
is a (typically small) group of nodes fully connected
to each other. The size n of each clique—namely, its
number of nodes—is drawn at random from a pre-
scribed probability distribution f,, (n = 1,2,...).
The expected total number of nodes in the net-
work is thus N = Q(n), with (n) the mean value
of n over the distribution f,. Then, M inter-
clique links are established between randomly cho-
sen nodes belonging to different cliques, with the
condition that at most one inter-clique link reaches
any given node. The number M is chosen in such a
way that the resulting fraction of nodes connected
to inter-clique links has a prescribed value ~. This
is achieved by taking M = N~/2. Figure | shows
an example of this construction for a small num-
ber of cliques. For future reference, we quote the
probability F,, ,, of having a clique of size n with
m inter-clique links (0 < m < n):

Fom = <;> YL =) fn (1)

As shown in previous work [8], the simple rules
used to build RNoCs enable a straightforward cal-
culation of their structural properties, such as de-
gree distribution, clustering, assortativity, and di-
ameter. In many respects, the RNoC structure is
similar to that of small-world networks [9,10]. To
our present purposes, a crucial question is whether
a giant connected component exists or not. In fact,
for a random walk to sample a statistically signifi-
cant part of the network, it must take place on the
giant component. We recall that, strictly speaking,
a giant component is well defined for an infinitely
large network only as a connected component that
contains a finite fraction of the whole network [11].
In finite, but large, networks, it is identified as the
largest connected component.

Since cliques are internally fully connected,
whether a giant component is present in the RNoC
is determined by the random pattern of inter-clique
links. Making use of the generating function for
the degree distribution, the theory of random net-
works [12] provides the tools to assess the existence
and the size of the giant component. Concretely, it

Figure 1: A random network of cliques with Q@ = 7
cliques, N = 22 nodes and M = 6 inter-clique links.
The fraction of nodes with inter-clique links is v =
6/11 ~ 0.55. In the plot, inter-clique links are thinner
than links inside cliques, and nodes in different cliques
are colored with different shades.

can be shown that a giant component comprising a
fraction
(2)

of all cliques exists in a RNoC when the equation
u = G1(u) has a solution 0 < u < 1. Here,

Golw) = 3 0™ Fu = (1= 7 +72)")  (3)

s=1—Go(u)

is the generating function for the probability distri-
bution of the number of inter-clique links, and

Gl(l‘)z — <n(1_7+7x)n_1>7

(n)
where primes denote differentiation with respect to
x. As above, (-) stands for the average over the
clique size distribution f,. The solution for u effec-
tively exists when the network is sufficiently con-
nected by inter-clique links, i.e. when ~ is larger
than a certain critical value determined by the dis-
tribution f, [8].

To relate the statistical features of a random walk
on the giant component to the structural properties
of the network, it is important to take into account
that the distribution of clique sizes and inter-clique
links is not the same inside the giant component

(4)
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as over the entire network. Using standard results
on the “microscopic” structure of the giant com-
ponent [13], we find that the joint distribution of
clique sizes and inter-clique connections inside it
reads

1—u™

G

= Fn,ma
S

()

where u and s are given by Egs. (2) to (4), and
F,m is the corresponding distribution all over the
RNoC, Eq. (1).

n,m

IIT Statistics of random walks on
RNoCs

Now, we consider a random walker moving on the
giant component of a RNoC in discrete time. At
each time step, the walker jumps from the node it
occupies to one of the neighbor nodes, chosen at
random with equal probability. The new node can
belong to the same clique or, if the original node
had an inter-clique link, to a different one.

Having in mind the aim of inferring the struc-
tural features of the RNoC from the random walk
statistics, our main interest is to find the frequency
with which the walker stays for a certain time in a
clique before jumping to another one. To this end,
we first compute the probability II,, ,,,(T') that the
walker spends exactly T steps inside a clique of size
n with m inter-clique links. Along a single visit of
the random walker to any given clique, the evo-
lution can be conceived as a Markov process with
three different states:

1. the walker is on a node without inter-clique
link;

2. the walker is on a node with inter-clique link;
3. the walker has left the clique.

The time-dependent probabilities of each state can
be arranged in a vector p(t) = [p1(¢),p2(t), p3(t)],
which evolves in time as p(t + 1) = Mp(¢). For a
clique with n nodes and m inter-clique links (1 <
m < n), the transference matrix reads

m—m-1)/(n—1) (n—m)/n 0
M= m/(n—1) (m—=1)/n 0
0 1/n 1

(6)

The probabilities at time ¢, given by
p(t) = M 'p(1), (7)

have to be evaluated using the initial condition
p(1) = (0,1,0). The elements of M in Eq. (6)
result from straightforward counting of the events
that lead from one state to another.

The probability II,, ,,(T) is given by the prod-
uct of the probability that the walker is in state 2
at time T, times the probability that it leaves the
clique in the next jump, 1/n. Namely,

M (T) = ~pa(T) = p(1) - M7 (1), (8

where - indicates scalar product. An explicit form

for II,, ,,,(T') can be obtained by diagonalizing M,
whose eigenvalues turn out to be Ay =1 and

Aoz =

Here, R = /(n? — 1)2 — 2m(n — 1)2 + m2, and the
upper and lower signs correspond to Ao and Ag, re-
spectively. Operating with the diagonalized version
of M in Eq. (8), we find

7>\T_1R+n272nm+mfl
=A2

I, (T
nm(T) 2nR
R—n?+4+2nm—-m+1
P 10
+ 3 'nR ) ( )
which is correctly normalized for all n and m:
> Mym(T) = 1. (11)

T=1

For n > 1 and m < n, the eigenvalues satisfy Ay <
0 < Az and |A2] < A3 < 1. These inequalities
imply that, for large T, II,, ,,,(T") is dominated by
the second term in Eq. (10), and therefore decreases
as I, (T) ~ AL. Moreover, since A is negative,
an oscillatory dependence is expected for small T
due to the alternating sign of the first term.

Once II,, ,,(T) has been evaluated, we can com-
pute the probability P(T) that a random walker on
the giant component of a given RNoC stays exactly
T steps inside any of its cliques. This probability
results from a sum of the contributions of cliques of
each size n and each number of inter-clique links m
weighted by the frequency of such cliques, which is
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Figure 2: Probability P(T") that the random walker
spends T steps inside a clique, Eq. (12), for two distri-
butions of clique sizes fn, Egs. (13) and (14), and two
values of the fraction of nodes with inter-clique links,
~. Symbols correspond to simulation results, while lines
join the values of P(T') computed using Eq. (12).

given by the probability distribution Fgm obtained
in the preceding section, Eq. (5). Moreover, each
contribution is weighted by the probability of en-
tering a given clique, which is proportional to the
number of its inter-clique links, m. The result is

2 e ME T i (T)
B Zn Z:Ln:l mFgm ,

with the first sum running over the relevant values
of n, which depend on the distribution of clique
sizes. The normalization of P(T) is ensured by
that of II,, ,,,(T), Eq. (11). Generally, P(T) can-
not be given an explicit analytical form but can
be straightforwardly computed by numerical means
once Fgm has been specified.

Direct application of the result for P(T),
Eq. (12), to the statistics of the time spent in-
side each clique along an actual random walk on
a RNoC requires neglecting correlations between
successive visits to different cliques. In fact, after
abandoning a given clique to enter a neighbor, there
is a relatively large probability that the walker re-
turns to the previous clique. This kind of corre-
lation, however, should become less important as
the random walk progresses, covering increasingly
large portions of the network.

To confirm this conjecture, we have simulated

P(T) (12)

random walks on the giant component of RNoCs
with two distributions of clique sizes, namely, a
delta-like distribution,

fn = 571,777

where all cliques have size 7, and a uniform distri-

bution,
; _{1/(77—2) for 3<n <1,

(13)

. (14)
0 otherwise,

where all the sizes between 3 and 7 have the same
probability. Depending on the value of 7, the frac-
tion of nodes with inter-clique links, 7, has been
chosen to ensure the presence of a well-developed
giant component. FEach random walk was con-
ducted on a RNoC consisting of Q@ = 10° cliques,
along 107 time steps. Figure 2 shows the results in
two illustrative cases: the delta-like distribution,
Eq. (13) with n = 15, for v = 0.2, and the uni-
form distribution, Eq. (14) with n =7, for v = 0.4.
Symbols stand for the results of numerical realiza-
tions of the random walk, and lines join the values
of P(T) obtained from Eq. (12) as a function of
T. Up to small random fluctuations, the excellent
agreement between numerical and analytical results
strongly supports the above conjecture. Moreover,
the plots illustrate the oscillations expected in P(T)
for small values of T' due to the opposite signs of
A2 and Az in Eq. (10), as well as the exponential
decrease for large T.

IV Bayesian inference of the RNoC
structure

To apply the above results to the inference of the
RNoC structure, we assume that, as the result of
observing a random walk on the network, a vec-
tor T = (T1,T5,...,Tk) has been recorded, whose
components T}, are the times spent by the walker
inside successively visited cliques. Our aim is to
compute the conditional probability P(®|T) that
the network has a certain structure given the ob-
served vector T. Here, & denotes a vector whose
components are the parameters that specify the
RNoC structure. These encompass the fraction of
nodes with inter-clique links, v, and the parameters
needed to determine the distribution of clique sizes
fn. Generally, among the components of ®, some
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parameters may be known with certainty, while
others are to be determined from probabilistic in-
ference.

By virtue of Bayes’ theorem [14], we have

P(T|®)

P@®IT) = o

P(®), (15)
where P(T|®) is the probability of observing the
vector T conditioned on the parameter set ®, and
P(T) = > 4 P(T|®)P(®). In turn, P(®) is the
a priori probability of the set ®, to be assigned
on the basis of a suitable hypothesis, as explained
later. In our case, Bayesian inference consists in es-
timating the most likely value of ® from the prob-
ability P(®|T) calculated as in Eq. (15), using the
information obtained from the measurements of T.
This requires applying Eq. (15) to each possible pa-
rameter set ® in order to evaluate the correspond-
ing P(®|T), and then selecting the set ® for which
the probability is maximal. In practice, P(®|T) is
numerically computed for a discrete, but large, en-
semble of parameter sets ®, and its maximum over
this ensemble is then detected.

For each parameter set ®, the conditional prob-
ability P(T|®) can be computed using the results
obtained in Section III, as

K
P(T|®) = [ P(T:|®), (16)
k=1

where P(Ty|®) is the probability P(T') given by
Eq. (12), calculated for an RNoC with parameters
® and evaluated on time Ty. In Eq. (16), we have
assumed that the probabilities of the components
of T are mutually independent, as supported by
the numerical results presented at the end of the
preceding section. Thus, P(T|®) is given by the
product of the probabilities of all the individual
components of T.

In order to minimize the information provided
to evaluate P(®|T), we assign the same a priori
probability to all the sets ®, say P(®) = P, for all
®. With this choice, Eq. (15) can be rewritten as

_ p(Tj®) , _ P(T[®)
with Z(T) = P(T)/P, = Y.& P(T|®). Using

Eq. (17), we compute P(®|T) by first evaluat-
ing P(T|®) from Eq. (16), and then normalizing

over the relevant values of ® to find Z(T). Once
P(®|T) has been obtained for each ®, the unknown
network parameters inferred from the vector T are
those with the highest probability, namely those
that maximize P(®|T).

To assess the performance of this procedure, we
operate as follows. First, we generate a RNoC with
a prescribed set of parameters ®,. Next, a ran-
dom walk is carried out on its giant component,
recording the times T} spent by the walker in the
successive cliques it visits. This provides the vec-
tor T = (T1,Ts,...,Tk). Then, using Egs. (16)
and (17), we calculate the conditional probability
P(®|T) for a large ensemble of parameter sets ®
and detect the set ®,,. for which this probabil-
ity reaches a maximum. Finally, ®,,., is compared
with ®g. The larger the coincidence, the better the
performance.

i Inferring ~v

As a first example, we assume that we know the dis-
tribution of clique sizes in the RNoC, f,, but that
the fraction of nodes with inter-clique links v is un-
known and has to be inferred as explained above.
To test the procedure in this situation, we have
taken f, as the delta-like distribution of Eq. (13),
with n = 7, and have built a RNoC with Q = 10°

T T
10’4 t =100 5
1000 ]
4 E’ —_— 104 i
3 i — 200 3
—~ ] H 6 ]
= ] : - 1
> 0 :
~—~ 10 _
[a
107 : i :
0.4 0.6 0.8 1.0

Figure 3: The probability distribution P(v|T) as a
function of v, computed from six random walks with
different length tmax on the giant component of a RNoC
with cliques of identical sizes n = 7. The dashed verti-
cal line indicates the fraction of nodes with inter-clique
links used to build the network, vo = 0.7.
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cliques and ~y = 0.7. On this network, we per-
formed random walks of different lengths ¢,.x and,
for each random walk, we determined the vector
T containing the times spent by the walker inside
successively visited cliques.

Figure 3 shows the probability distributions
P(7|T) calculated as prescribed by Eqs. (16) and
(17), for six random walks with various values of
tmax- For each walk, P(+|T) has been computed
as a function of v in the interval (0,1) with dis-
cretization 6y = 107, i.e. for an ensemble of some
10* values of v. The results clearly show that
P(~|T) becomes increasingly concentrated around
a well-defined value of v as t;,.x grows and the ran-
dom walk samples the network more thoroughly.
For tyax = 10%, P(v|T) attains its maximum at
Ymax = 0.7013(1), which constitutes our best esti-
mate for v from this specific realization. The small
difference between Y. and g, just below 0.2%,
can be ascribed to the fact that inter-clique links
in the RNoC are established at random as it is built,
so that the fraction of nodes with such links in a
given realization of the network can slightly differ
from ~g.

To evaluate the dispersion of the results obtained
from different realizations of the random walk, we
performed sets of 100 random walks for each value
of tmax. For each random walk, we have computed
P(~|T) as a function of y—now, with discretization
0y = 1072—and numerically evaluated the mean
value

1

o) = [ aPamn, (18)
and the corresponding standard deviation o.,. For
the peaked profiles of P(¢|T), as in Fig. 3, the mean
value () yields an excellent estimate of the position
of the maximum, Yy,ax. Results are shown in the
main panel of Fig. 4, where each dot corresponds to
a single realization. We see that, as ta.x grows, not
only does 0., decrease, as already shown in Fig. 3,
but the values of (v) become more consistent be-
tween realizations. The inset shows the standard
deviation averaged over realizations, o, as a func-
tion of tyax. The straight segment has a slope of
—1/2, indicating that the average standard devia-
tion decreases as 0, ~ t;li,/f along the considered
interval.

We mention that we have also tested the comple-
mentary task of inferring 7 for delta-like and uni-

t =100
max
0.1 4

1000

w10

0.01 i .
1 10° == 10

0.2 0.4 0.6 0.8 10

YO

Figure 4: Main panel: Mean value () and standard de-
viation o4 for the probability distribution P(y|T) ob-
tained from random walks of length tmax on a RNoC
with cliques of identical sizes n = 7. Each dot corre-
sponds to a single random walk, among 100 for each
value of tmax. The dashed vertical line indicates the
fraction of nodes with inter-clique links used to build
the network, vo = 0.7. Inset: The standard deviation
averaged over realizations, 7., as a function of tmax-.
The slope of the straight segment equals —1/2.

form distributions, Egs. (13) and (14), now assum-
ing that v is known. In this case, successful infer-
ence requires shorter random walks, because 7 is a
discrete (integer) parameter. In fact, the probabil-
ity P(n|T) already has a maximum at the correct
value of 7 for random walks of length between 10°
and 10%. For brevity, the results for these cases are
not presented here.

ii Simultaneous inference of v and 7

In our second example, we use the above proce-
dure to infer two parameters, namely, v and 7,
assuming that the clique sizes are uniformly dis-
tributed according to Eq. (14). To test the method,
we constructed a RNoC with 10° cliques using
Yo = 0.75 and ny = 10. The results presented here
were obtained from three realizations of the ran-
dom walk on the giant component of the network,
with tmayx = 10%, 10°, and 106 steps, respectively.
Figure 5 depicts, in a color scale, the probability
distribution P(v,n|T) on the plane (v,n), as ob-
tained from Egs. (16) and (17) for an ensemble of
some 5000 pairs (v, ), using the vectors T recorded
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P(yn|T)

5.0

2.5

0.0

2.5

0.0
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Figure 5: The probability P(vy,n|T), in a color scale,
on the plane spanned by the parameters v and 7, as
estimated from three random walks of different length
tmax on the giant component of a RNoC with v = 0.75
and a uniform distribution of clique sizes, Eq. (14), with
no = 10. The discretization step in v is &y = 1072,
Straight dashed lines stand for the values of v and 7.

along the three random walks. Dashed lines stand
for the values of 7y and 7n9. The plots show clearly
that, much as observed in the previous example, the
probability becomes more concentrated and better
centered around the expected values of the param-
eters as the random walk increases in length.

Table 1 presents the mean values and standard
deviations of v and 7 derived from the distribution
P(v,n|T) for each random walk. Note that the es-
timate of the discrete parameter 7 converges faster
and more accurately to its expected value than that
of 7. In any case, for t,,.x = 10, both o and ng lie
inside the intervals defined by the mean value and
the standard deviation of each parameter.

tmax <’7> U’Y <77> 07]
10 071 006 10.1 0.9
10°  0.741 0.009 10.00  0.04
106 0.749 0.003 10.00 < 10=°

Table 1: Mean value and standard deviation of the pa-
rameters v and n deriving from the estimate of the prob-
ability P(v,n|T), as obtained from the three random
walks described in the text.

iii Parameter inference by gradient ascent

When the network parameters to be inferred from
a random walk on a RNoC are continuous, and/or
when their number increases, the calculation of the
probability P(®|T) all over the multidimensional
space spanned by ® may become computationally
impractical. In such cases, a better strategy may be
needed to efficiently locate the point where P(®|T)
attains its maximum. An alternative procedure
consists in implementing a biased random walk on
parameter space (not to be confused with the ran-
dom walk on the RNoC, used to obtain T), whose
steps only occur in directions along which the prob-
ability grows. In this way, P(®|T) needs to be
calculated only along the random walk path and
its immediate neighborhood. This is nothing but a
gradient ascent procedure [15], which ensures that,
for sufficiently long times, a local maximum of the
probability is eventually reached.

We have implemented this method to infer two
continuous parameters of a RNoC whose cliques
have two possible sizes (n = 3 or 4) distributed
with different frequencies, namely,

13 for n =3,
fn=q1-¢& forn=4, (19)
0 otherwise,

with 0 < £ < 1. The parameters to be estimated
are v and £. In the specific example presented be-
low, we have built the RNoC of 10° cliques using
Y0 = 0.75 and &y = 0.5. Then, we have run a single
random walk of 107 steps on its giant component,
in order to obtain the vector T.

The gradient-ascent random walk on the param-
eter space (7, &)—which, for computational repre-
sentation, is tessellated with discretization v and
0¢ in each direction—is carried out as follows. An
initial position for the walker, say (v;,&;), is cho-
sen at random in the relevant parameter interval
and the probability P(~;,&;|T) is computed. Then,
a jump to a randomly chosen nearest-neighbor
cell, say (v;,&;), is attempted. If P(v;,&|T) <
P(7;,&;|T) the jump is accepted and the walker
moves. Otherwise, another potential new position
(v4,&;) is selected. If the jump is rejected a pre-
scribed number of times 7, the process ends. This
procedure is expected to lead to the “trapping” of
the random walker in a cell where the probability
attains a local maximum.
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Figure 6: Fifteen trajectories of a gradient-ascent ran-
dom walk on the parameter plane (v,&), used to find
the maximum of the probability P(v, &|T), as explained
in the text. Dashed lines stand for the values 7o and
&o of the RNoC whose parameters are inferred. The
background represents P(v,£|T) in a color scale, with
lighter shades corresponding to higher values.

Figure 6 shows 15 trajectories of the gradient-
ascent random walker on the plane (v, ¢), starting
from different initial positions, with §y = 66 =1073
and 7 = 10. It is apparent that, in all cases,
the walker converges toward the expected point
(70,&0), at the intersection of the dashed lines.
The final positions of all the trajectories yield
v =0.750(1) and £ = 0.50(1) for the inferred pa-
rameters. Note also that all trajectories exhibit a
first stage where the walker approaches a curved
manifold and then proceeds along it. The slope of
the manifold near (v, &) indicates that the conver-
gence is considerably faster along v than along €.

V Conclusions

In this paper, we have tested a procedure to derive
information on network structure from the observa-
tion of random walks evolving on the network, or,
more precisely, on its giant component. Concretely,
we have implemented the method for random net-
works of cliques (RNoCs), for which we derived the

parameters defining the distribution of clique sizes
and the density of inter-clique connections from the
sequence of times spent by the random walker in-
side successively visited cliques. Parameter estima-
tion was based on Bayesian inference, under the
assumption of uniform a priori probability. Within
this formulation, Bayes’ theorem allows for the cal-
culation of a probability distribution over parame-
ter space, whose maximum is associated with the
best estimate. For two of the examples presented
here, we have shown how the results improve in
precision as the random walk becomes longer. In
all cases, we have obtained excellent estimates.

As we have demonstrated through specific ex-
amples, the procedure can be implemented in two
alternative ways. When the number of parame-
ters to be inferred is small, the probability distri-
bution can be computed all over the relevant zone
of parameter space, and its maximum can be de-
tected with satisfactory precision. As the number
of parameters grows, however, the calculation on a
multi-dimensional space may become computation-
ally very expensive. In this case, the position of the
maximum can be found more efficiently using other
methods. Here, we have used a random walk driven
by gradient ascent but, if a complicated probabil-
ity landscape is foreseen, a Monte Carlo algorithm
could provide a more exhaustive exploration of pa-
rameter space.

Network exploration using random walks re-
quires that, besides the rules that define its dynam-
ics, the walker (or its observer) is endowed with the
capability of recording some selected network fea-
tures as the process progresses. In our case, we
have assumed that it was possible to detect when
the walker jumps between cliques, for instance, dis-
cerning between intra- and inter-clique connections.
This assumption was essential to provide the series
of times spent inside cliques, which fed the Bayesian
approach. Inference based on recording other fea-
tures along the random walk may be the subject of
future work.

Acknowledgements - A. Nannini is supported
by a scholarship of Comisién Nacional de Energia
Atomica, Argentina, at Instituto Balseiro.

170002-8



1]

2]

PAPERS IN PHYSICS, VOL. 17, ART. 170002 (2025) / A Nannini & D H Zanette

S H Strogatz, Fxploring complex networks, Na-
ture 410, 268 (2001).

X Huang, D Chen, T Ren, D Wang, A sur-
vey of community detection methods in multi-
layer networks, Data Min. Knowl. Disc. 35, 1
(2021).

M Fukuda, K Nakajima, K Shudo, Estimating
the bot population on Twitter via random walk
based sampling, IEEE Access 10, 17201 (2022).

A R Faroque, S C Morrish, O Kuivalainen,
S Sundqvist, L Torkkeli, Microfoundations of
network exploration and exploitation capabil-

ities in international opportunity recognition,
Int. Business Rev. 30, 101767 (2021).

A Baptista, A Gonzalez, A Baudot, Universal
multilayer network exploration by random walk
with restart, Commun. Physics 5, 170 (2022).

L Dall’Asta, I Alvarez Hamelin, A Barrat, A
Viézquez, A Vespignani, Statistical theory of
Internet exploration, Phys. Rev. E 71, 036135
(2005).

N Masuda, M A Porter, R Lambiotte, Random
walks and diffusion on networks, Phys. Rep.
716-717, 1 (2017).

8]

[13]

[14]

[15]

170002-9

L A Sobehart, S Martinez Alcald, A Chacoma,
D H Zanette, Structural properties of random
networks of cliques, Physica A 624, 128998
(2023).

L A Sobehart, D H Zanette, Critical behavior
of rumor propagation on random networks of
cliques, Pap. Phys. 16, 160003 (2024).

D J Watts, S H Strogatz, Collective dynam-
ics of ‘small-world’ networks, Nature 393, 440
(1998).

M Newman, Networks. An Introduction, Ox-
ford University Press, Oxford (2018).

M E J Newman, S H Strogatz, D J Watts,
Random graphs with arbitrary degree distribu-
tion and their applications, Phys. Rev. E 64,
026118 (2001).

I Tishby, O Biham, E Katzav, R Kiihn, Reveal-
ing the microstructure of the giant component
in random graph ensembles, Phys. Rev. E 97,
042318 (2018).

W von der Linden, V Dose, U von Toussaint,
Bayesian Probability Theory: Applications in
the Physical Sciences, Cambridge University
Press, Cambridge, UK (2014).

S Boyd, L Vanderberghe, Convexr Optimiza-
tion, Cambridge University Press, Cambridge,

UK (2004).


https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1007/s10618-020-00716-6
https://doi.org/10.1007/s10618-020-00716-6
https://doi.org/10.1109/access.2022.3149887
https://doi.org/10.1016/j.ibusrev.2020.101767
https://doi.org/10.1038/s42005-022-00937-9
https://doi.org/10.1103/physreve.71.036135
https://doi.org/10.1103/physreve.71.036135
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1016/j.physrep.2017.07.007
https://doi.org/10.1016/j.physa.2023.128998
https://doi.org/10.1016/j.physa.2023.128998
https://doi.org/10.4279/pip.160003
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1103/physreve.64.026118
https://doi.org/10.1103/physreve.64.026118
https://doi.org/10.1103/physreve.97.042318
https://doi.org/10.1103/physreve.97.042318
https://doi.org/10.1017/cbo9781139565608
https://doi.org/10.1017/cbo9781139565608
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1017/CBO9780511804441

	Introduction
	Random networks of cliques (RNoCs)
	Statistics of random walks on RNoCs
	Bayesian inference of the RNoC structure
	Inferring 
	Simultaneous inference of  and 
	Parameter inference by gradient ascent

	Conclusions

