[1] O Berger, O Edholm, F Jahnig, Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature, Biophys. J. 72, 2002 (1997).

[2] E Egberts, S J Marrink, H J C Berendsen, Molecular dynamics simulation of a phospholipid membrane, Eur. Biophys. J. 22, 423 (1994).

[3] U Essmann, L Perera, M L Berkowitz, The origin of the hydration interaction of lipid bilayers from MD simulation of dipalmitoylphosphatidylcholine membranes in gel and crystalline phases, Langmuir 11, 4519 (1995).

[4] S E Feller, Y Zhang, R W Pastor, R B Brooks, Constant pressure molecular dynamics simulations: The Langevin piston method, J. Chem. Phys. 103, 4613 (1995).

[5] W Shinoda, T Fukada, S Okazaki, I Okada, Molecular dynamics simulation of the dipalmitoylphosphatidylcholine (DPPC) lipid bilayer in the fluid phase using the Nosr-Parrinello-Rahman NPT ensemble, Chem. Phys. Lett. 232, 308 (1995).

[6] D P Tieleman, H J C Berendsen, Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters, J. Chem. Phys. 105, 4871 (1996).

[7] K Tu, D J Tobias, M L Klein, Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer, Biophys. J. 69, 2558 (1995).

[8] M F Brown, Theory of spin-lattice relaxation in lipid bilayers and biological membranes. Dipolar relaxation, J. Chem. Phys. 80, 2808 (1984).

[9] M F Brown, Theory of spin-lattice relaxation in lipid bilayers and biological membranes. 2H and 14N quadrupolar relaxation, J. Phys. Chem. 77, 1576 (1982).

[10] J F Nagle, R Zang, S Tristam-Nagle, W S Sun, H I Petrache, R M Suter, X-ray structure determination of fully hydrated L. phase dipalmitoylphosphatidylcholine bilayers, Biophys. J. 70, 1419 (1996).

[11] R P Rand, V A Parsegian, Hydration forces between phospholipid bilayers, Biochim. Biophys. Acta 988, 351 (1989).

[12] J Seelig, Deuterium magnetic resonance: Theory and application to lipid membranes, Q. Rev. Biophys. 10, 353 (1977).

[13] J Seelig, A Seelig, Lipid conformation in model membranes and biological systems, Q. Rev. Biophys. 13, 19 (1980).

[14] W J Sun, R M Suter, M A Knewtson, C R Worthington, S Tristram-Nagle, R Zhang, J F Nagle, Order and disorder in fully hydrated unoriented bilayers of gel phase dipalmitoylphosphatidylcholine, Phys. Rev. E. 49, 4665 (1994).

[15] H Akutsu, J Seelig, Interaction of metal ions with phosphatidylcholine bilayer membranes, Biochemistry 20, 7366 (1981).

[16] M G Ganesan, D L Schwinke, N Weiner, Effect of Ca2+ on thermotropic properties of saturated phosphatidylcholine liposomes, Biochim. Biophys. Acta 686, 245 (1982).

[17] L Herbette, C A Napolitano, R V McDaniel, Direct determination of the calcium profile structure for dipalmitoyllecithin multilayers using neutron diffraction, Biophys. J. 46, 677 (1984).

[18] D Huster, K Arnold, K Gawrisch, Strength of Ca2+ binding to retinal lipid membrane: Consequences for lipid organization, Biophys. J. 78, 3011 (2000).

[19] Y Inoko, T Yamaguchi, K Furuya, T Mitsui, Effects of cations on dipalmitoyl phosphatidylcholine/cholesterol/water systems, Biochim. Biophys. Acta 413, 24 (1975).

[20] R Lehrmann, J J Seelig, Adsorption of Ca2+ and La3+ to bilayer membranes: Measurement of the adsorption enthalpy and binding constant with titration calorimetry, Biochim. Biophys. Acta 1189, 89 (1994).

[21] L J Lis, W T Lis, V A Parsegian, R P Rand, Adsorption of divalent cations to a variety of phosphatidylcholine bilayers, Biochemistry 20, 1771 (1981).

[22] L J Lis, V A Parsegian, R P Rand, Binding of divalent cations to dipalmitoylphosphatidylcholine bilayers and its effect on bilayer interaction, Biochemistry 20, (1981).

[23] T Shibata, Pulse NMR study of the interaction of calcium ion with dipalmitoylphosphatidylcholine lamellae, Chem. Phys. Lipids. 53, 47 (1990).

[24] S A Tatulian, V I Gordeliy, A E Sokolova, A G Syrykh, A neutron diffraction study of the influence of ions on phospholipid membrane interactions, Biochim. Biophys. Acta 1070, 143 (1991).

[25] R A Bockmann, H Grubmuller, Multistep binding of divalent cations to phospholipid bilayers: A molecular dynamics study, Angewandte Chemie 43, 1021 (2004).

[26] J Faraudo, A Travesset, Phosphatidic acid domains in membranes: Effect of divalent counterions, Biophys. J. 92, 2806 (2007).

[27] A A Gurtovenko, Asymmetry of lipid bilayers induced by monovalent salt: Atomistic molecular-dynamics study, J. Chem. Phys. 122, 244902 (2005).

[28] P Mukhopadhyay, L Monticelli, D P Tieleman, Molecular dynamics simulation of a palmitoyl-oleoyl phosphatidylserine bilayer with Na+ counterions and NaCl, Biophys. J. 86, 1601 (2004).

[29] S A Pandit, D Bostick, M L Berkowitz, Molecular dynamics simulation of a dipalmitoylphosphatidylcholine bilayer with NaCl, Biophys. J. 84, 3743 (2003).

[30] U R Pedersen, C Laidy, P Westh, G H Peters, The effect of calcium on the properties of charged phospholipid bilayers, Biochim. Biophys. Acta 1758, 573 (2006).

[31] N Sachs, H Nanda, H I Petrache, T B Woolf, Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: Molecular dynamics simulations, Biophys. J. 86, 3772 (2004).

[32] K Shinoda, W Shinoda, M Mikami, Molecular dynamics simulation of an archeal lipid bilayer whit sodium chloride, Phys. Chem. Chem. Phys. 9, 643 (2007).

[33] N L Yamada, H Seto, T Takeda, M Nagao, Y Kawabata, K Inoue, SAXS, SANS and NSE studies on "unbound state" in DPPC/water/CaCl2 system, J. Phys. Soc. Jpn. 74, 2853 (2005).

[34] D Frenkel, B Smit, Understanding molecular simulations, Academic Press, New York (2002).

[35] J J Lopez Cascales, J Garcia de la Torre, S J Marrink, H J C Berendsen, Molecular dynamics simulation of a charged biological membrane, J. Chem. Phys. 104, 2713 (1996).

[36] W F van Gunsteren, H J C Berendsen, Computer simulations of molecular dynamics: Methodology, applications and perspectives in chemistry, Angew. Chem Int. Ed. Engl. 29, 992 (1990).

[37] R A Bockmann, A Hac, T Heimburg, H Grubmuller, Effect of sodium chloride on a lipid bilayer, Biophys. J. 85, 1647 (2003).

[38] A A Gurtovenko, I Vattulainen, Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: Insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane, J. Phys. Chem. B. 112, 1953 (2008).

[39] H J C Berendsen, J R Grigera, T P Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91, 6269 (1987).

[40] H J C Berendsen, D van der Spoel, R van Drunen, A message-passing parallel molecular dynamics implementation, Comp. Phys. Comm. 91, 43 (1995).

[41] E Lindahl, B Hess, D van der Spoel, GROMACS 3.0: A package for molecular simulation and trajectory analysis, J. Mol. Mod. 7, 306 (2001).

[42] T Darden, D York, L Pedersen, Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems, J. Chem. Phys. 98, 10089 (1993).

[43] U Essmann, L Perea, M L Berkowitz, T Darden, H Lee, L G Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys. 103, 8577 (1995).

[44] L R De Young, K A Dill, Solute partitioning into lipid bilayer-membranes, Biochemistry 27, 5281 (1988).

[45] A Seelig, J Seelig, The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance, Biochemistry 13, 4839 (1974).

[46] G Cevc, A Watts, D Marsh, Titration of the phase transition of phosphatidilserine bilayer membranes. Effect of pH, surface electrostatics, ion binding and head-group hydration, Biochemistry 20, 4955 (1981).

[47] H Hauser, F Paltauf, G G Shipley, Structure and thermotropic behavior of phosphatidylserine bilayer membranes, Biochemistry 21, 1061 (1982).

[48] J F Nagle, S Tristam-Nagle, Structure of lipid bilayers, Biochim. Biophy. Acta 1469, 159 (2000).

[49] B A Lewis, D M Engelman, Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles, J. Mol. Biol. 166, 211 (1983).

[50] R J Pace, S I Cham, Molecular motions in lipid bilayer. I. Statistical mechanical model of acyl chains motion, J. Chem. Phys. 76, 4217 (1982).

[51] R L Thurmond, S W Dodd, M F Brown, Molecular areas of phospholipids as determined by 2H NMR spectroscopy, Biphys. J. 59, 108 (1991).

[52] R D Porasso, J J Lopez Cascales, Study of the effect of Na+ and Ca2+ ion concentration on the structure of an asymmetric DPPC/DPPS + DPPS lipid bilayer by molecular dynamics simulation, Coll. and Surf. B. Bioint. 73, 42 (2009).