
Papers in Physics, vol. 5, art. 050001 (2013)

Received: 12 December 2012, Accepted: 2 February 2013
Edited by: G. Mindlin
Licence: Creative Commons Attribution 3.0
DOI: http://dx.doi.org/10.4279/PIP.050001

www.papersinphysics.org

ISSN 1852-4249

LT2C2: A language of thought with Turing-computable Kolmogorov

complexity

Sergio Romano,1∗ Mariano Sigman,2, 3† Santiago Figueira1, 3‡

In this paper, we present a theoretical effort to connect the theory of program size to
psychology by implementing a concrete language of thought with Turing-computable Kol-
mogorov complexity (LT2C2) satisfying the following requirements: 1) to be simple enough
so that the complexity of any given finite binary sequence can be computed, 2) to be based
on tangible operations of human reasoning (printing, repeating,. . . ), 3) to be sufficiently
powerful to generate all possible sequences but not too powerful as to identify regulari-
ties which would be invisible to humans. We first formalize LT2C2, giving its syntax and
semantics and defining an adequate notion of program size. Our setting leads to a Kol-
mogorov complexity function relative to LT2C2 which is computable in polynomial time,
and it also induces a prediction algorithm in the spirit of Solomonoff’s inductive infer-
ence theory. We then prove the efficacy of this language by investigating regularities in
strings produced by participants attempting to generate random strings. Participants had
a profound understanding of randomness and hence avoided typical misconceptions such as
exaggerating the number of alternations. We reasoned that remaining regularities would
express the algorithmic nature of human thoughts, revealed in the form of specific patterns.
Kolmogorov complexity relative to LT2C2 passed three expected tests examined here: 1)
human sequences were less complex than control PRNG sequences, 2) human sequences
were not stationary, showing decreasing values of complexity resulting from fatigue, 3) each
individual showed traces of algorithmic stability since fitting of partial sequences was more
effective to predict subsequent sequences than average fits. This work extends on previous
efforts to combine notions of Kolmogorov complexity theory and algorithmic information
theory to psychology, by explicitly proposing a language which may describe the patterns
of human thoughts.
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I. Introduction

Although people feel they understand the concept
of randomness [1], humans are unable to produce
random sequences, even when instructed to do
so [2–6], and to perceive randomness in a way that
is inconsistent with probability theory [7–10]. For
instance, random sequences are not perceived by
participants as such because runs appear too long
to be random [11,12] and, similarly, sequences pro-
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duced by participants aiming to be random have
too many alternations [13, 14]. This bias, known
as the gambler’s fallacy, is thought to result from
an expectation of local representativeness (LR) of
randomness [10] which ascribes chance to a self-
correcting mechanism, promptly restoring the bal-
ance whenever disrupted. In words of Tversky and
Kahneman [5], people apply the law of large num-
bers too hastily, as if it were the law of small num-
bers. The gambler’s fallacy leads to classic psycho-
logical illusions in real-world situations such as the
hot hand perception by which people assume spe-
cific states of high performance, while analysis of
records show that sequences of hits and misses are
largely compatible with Bernoulli (random) pro-
cess [15, 16].
Despite massive evidence showing that percep-

tion and productions of randomness shows system-
atic distortions, a mathematical and psychologi-
cal theory of randomness remains partly elusive.
From a mathematical point of view —as discussed
below— a notion of randomness for finite sequences
presents a major challenge.
From a psychological point of view, it remains

difficult to ascribe whether the inability to produce
and perceive randomness adequately results from
a genuine misunderstanding of randomness or, in-
stead, as a consequence of the algorithmic nature
of human thoughts which is revealed in the forms
of patterns and, hence, in the impossibility of pro-
ducing genuine chance.
In this work, we address both issues by devel-

oping a framework based on a specific language of
thought by instantiating a simple device which in-
duces a computable (and efficient) definition of al-
gorithmic complexity [17–19].
The notion of algorithmic complexity is de-

scribed in greater detail below but, in short, it as-
signs a measure of complexity to a given sequence
as the length of the shortest program capable of
producing it. If a sequence is algorithmically com-
pressible, it implies that there may be a certain
pattern embedded (described succinctly by the pro-
gram) and hence it is not random. For instance, the
binary version of Champernowne’s sequence [20]

01101110010111011110001001101010111100 . . .

consisting of the concatenation of the binary rep-
resentation of all the natural numbers, one after
another, is known to be normal in the scale of 2,

which means that every finite word of length n oc-
curs with a limit frequency of 2−n —e.g., the string
1 occurs with probability 2−1, the string 10 with
probability 2−2, and so on. Although this sequence
may seem random based on its probability distri-
bution, every prefix of length n is produced by a
program much shorter than n.
The theory of program size, developed si-

multaneously in the ’60s by Kolmogorov [17],
Solomonoff [21] and Chaitin [22], had a major influ-
ence in theoretical computer science. Its practical
relevance was rather obscure because most notions,
tools and problems were undecidable and, overall,
because it did not apply to finite sequences. A
problem at the heart of this theory is that the com-
plexity of any given sequence depends on the chosen
language. For instance, the sequence

x1 = 1100101001111000101000110101100110011100

which seems highly complex, may be trivially ac-
counted by a single character if there is a symbol
(or instruction of a programming language) which
accounts for this sequence. This has its psycholog-
ical analog in the kind of regularities people often
extract:

x2 = 1010101010101010101010101010101010101010

is obviously a non-random sequence, as it can suc-
cinctly be expressed as

repeat 20 times: print ‘10’. (1)

Instead, the sequence

x3 = 0010010000111111011010101000100010000101

appears more random and yet it is highly compress-
ible as it consists of the first 40 binary digits of
π after the decimal point. This regularity is sim-
ply not extracted by the human-compressor and
demonstrates how the exceptions to randomness re-
veal natural patterns of thoughts [23].
The genesis of a practical (computable) algorith-

mic information theory [24] has had an influence
(although not yet a major impact) in psychology.
Variants of Kolmogorov complexity have been ap-
plied to human concept learning [25], to general
theories of cognition [26] and to subjective random-
ness [23, 27]. In this last work, Falk and Konold
showed that a simple measure, inspired in algorith-
mic notions, was a good correlate of perceived ran-
domness [27]. Griffiths & Tenenbaum developed
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statistical models that incorporate the detection of
certain regularities, which are classified in terms of
the Chomsky hierarchy [23]. They showed the exis-
tence of motifs (repetition, symmetry) and related
their probability distributions to Kolmogorov com-
plexity via Levin’s coding theorem (cf. section VII.
for more details).

The main novelty of our work is to develop a class
of specific programming languages (or Turing ma-
chines) which allows us to stick to the theory of pro-
gram size developed by Kolomogorov, Solomonoff
and Chaitin. We use the patterns of sequences of
humans aiming to produce random strings to fit, for
each individual, the language which captures these
regularities.

II. Mathematical theory of random-

ness

The idea behind Kolmogorov complexity theory is
to study the length of the descriptions that a formal
language can produce to identify a given string. All
descriptions are finite words over a finite alphabet,
and hence each description has a finite length —or,
more generally, a suitable notion of size. One string
may have many descriptions, but any description
should describe one and only one string. Roughly,
the Kolmogorov complexity [17] of a string x is the
length of the shortest description of x. So a string
is ‘simple’ if it has at least one short description,
and it is ‘complex’ if all its descriptions are long.
Random strings are those with high complexity.

As we have mentioned, Kolmogorov complexity
uses programming languages to describe strings.
Some programming languages are Turing complete,
which means that any partial computable function
can be represented in it. The commonly used pro-
gramming languages, like C++ or Java, are all Tur-
ing complete. However, there are also Turing in-
complete programming languages, which are less
powerful but more convenient for specific tasks.

In any reasonable imperative language, one can
describe x2 above with a program like (1), of length
26, which is considerably smaller than 40, the size
of the described string. It is clear that x2 is ‘sim-
ple’. The case of x3 is a bit tricky. Although at
first sight it seems to have a complete lack of struc-
ture, it contains a hidden pattern: it consists of
the first forty binary digits of π after the decimal

point. This pattern could hardly be recognized by
the reader, but once it is revealed to us, we agree
that x3 must also be tagged as ‘simple’. Observe
that the underlying programming language is cen-
tral: x3 is ‘simple’ with the proviso that the lan-
guage is strong enough to represent (in a reasonable
way) an algorithm for computing the bits of π —a
language to which humans are not likely to have
access when they try to find patterns in a string.
Finally, for x1, the best way to describe it seems to
be something like

print ‘1100101001111000101000110101100110011100’,

which includes the string in question verbatim,
length 48. Hence x1 only has long descriptions and
hence it is ‘complex’.
In general, both the string of length n which al-

ternates 0s and 1s and the string which consists of
the first n binary digits of π after the decimal point
can be computed by a program of length ≈ logn —
and this applies to any computable sequence. The
idea of the algorithmic randomness theory is that
a truly random string of length n necessarily needs
a program of length ≈ n (cf. section ii. for details).

i. Languages, Turing machines and Kol-

mogorov complexity

Any programming language L can be formalized
with a Turing machine ML, so that programs of L
are represented as inputs of ML via an adequate
binary codification. If L is Turing complete then
the corresponding machine ML is called universal,
which is equivalent to say that ML can simulate
any other Turing machine.
Let {0, 1}∗ denote the set of finite words over

the binary alphabet. Given a Turing machine M ,
a program p and a string x (p, x ∈ {0, 1}∗), we say
that p is an M -description of x if M(p) = x —
i.e., the program p, when executed in the machine
M , computes x. Here we do not care about the
time that the computation needs, or the memory
it consumes. The Kolmogorov complexity of x ∈
{0, 1}∗ relative to M is defined by the length of the
shorter M -description of x. More formally,

KM (x)
def

= min{|p| : M(p) = x} ∪ {∞},

where |p| denotes the length of p. Here M is any
given Turing machine, possibly one with a very spe-
cific behavior, so it may be the case that a given
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string x does not have any M -description at all. In
this case,M(x) = ∞. In practical terms, a machine
M is a useful candidate to measure complexity if it
computes a surjective function. In this case, every
string x has at least one M -description and there-
fore KM (x) < ∞.

ii. Randomness for finite words

The strength of Kolmogorov complexity appears
when M is set to any universal Turing machine U .
The invariance theorem states that KU is minimal,
in the sense that for every Turing machine M there
is a constant cM such that for all x ∈ {0, 1}∗ we
have KU (x) ≤ KM (c) + cM . Here, cM can be seen
as the specification of the languageM in U (i.e., the
information contained in cM tells U that the ma-
chine to be simulated is M). If U and U ′ are two
universal Turing then KU and KU ′ differ at most
by a constant. In a few words, KU (x) represents
the length of the ultimate compressed version of x,
performed by means of algorithmic processes.
For analysis of arbitrarily long sequences, cM be-

comes negligible and hence for nonpractical aspects
of the theory the choice of the machine is not rel-
evant. However, for short sequences, as we study
here, this becomes a fundamental problem, as no-
tions of complexity are highly dependent on the
choice of the underlying machine through the con-
stant cM . The most trivial example, as referred in
the introduction, is that for any given sequence, say
x1, there is a machine M for which x1 has minimal
complexity.

iii. Solomonoff induction

Here we have presented compression as a frame-
work to understand randomness. Another very in-
fluential paradigm proposed by Schnorr is to use
the notion of martingale (roughly, a betting strat-
egy), by which a sequence is random if there is
no computable martingale capable of predicting
forthcoming symbols (say, of a binary alphabet
{0, 1}) better than chance [28, 29]. In the 1960s,
Solomonoff [21] proposed a universal prediction
method which successfully approximates any dis-
tribution µ, with the only requirement of µ being
computable.
This theory brings together concepts of algorith-

mic information, Kolmogorov complexity and prob-

ability theory. Roughly, the idea is that amongst
all ‘explanations’ of x, those which are ‘simple’ are
more relevant, hence following Occam’s razor prin-
ciple: amongst all hypothesis that are consistent
with the data, choose the simplest. Here the ‘ex-
planations’ are formalized as programs computing
x, and ‘simple’ means low Kolmogorov complexity.
Solomonoff’s theory, builds on the notion of

monotone (and prefix) Turing machines. Mono-
tone machines are ordinary Turing machines with
a one-way read-only input tape, some work tapes,
and a one-way write-only output tape. The out-
put is written one symbol at a time, and no eras-
ing is possible in it. The output can be finite if
the machine halts, or infinite in case the machine
computes forever. The output head of monotone
machines can only “print and move to the right” so
they are well suited for the problem of inference of
forthcoming symbols based on partial (and finite)
states of the output sequence. Any monotone ma-
chine N has the monotonicity property (hence its
name) with respect to extension: if p, q ∈ {0, 1}∗

then N(p) is a prefix of N(paq), where paq denotes
the concatenation of p and q.
One of Solomonoff’s fundamental results is that

given a finite observed sequence x ∈ {0, 1}∗, the
most likely finite continuation is the one in which
the concatenation of x and y is less complex in a
Kolmogorov sense. This is formalized in the follow-
ing result (see theorem 5.2.3 of [24]): for almost all
infinite binary sequences X (in the sense of µ) we
have

− lim
n→∞

logµ(y | X↾n) =

lim
n→∞

KmU ((X↾n)ay)−KmU (X↾n) +O(1) < ∞.

Here, X↾n represents the first n symbols of X , and
KmU is the monotone Kolmogorov complexity rel-
ative to a monotone universal machine U . That
is, KmU(x) is defined as the length of the shortest
program p such that the output of U(p) starts with
x —and possibly has a (finite or infinite) continua-
tion.
In other words, Solomonoff inductive inference

leads to a method of prediction based on data com-
pression, whose idea is that whenever the source
has output the string x, it is a good heuristic to
choose the extrapolation y of x that minimizes
KmU (x

ay). For instance, if one has observed x2,
it is more likely for the continuation to be 1010
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rather than 0101, as the former can be succinctly
described by a program like

repeat 22 times: print ‘10’. (2)

and the latter looks more difficult to describe; in-
deed the shorter program describing it seems to be
something like

repeat 20 times: print ‘10’; (3)

print ‘0101’.

Intuitively, as program (2) is shorter than (3),
x2

a1010 is more probable than x2
a0101. Hence,

if we have seen x2, it seems to be a better strategy
to predict 1.

III. A framework for human

thoughts

The notion of thought is not well grounded. We
lack an operative working definition and, as also
happens with other terms in neuroscience (con-
sciousness, self, ...), the word thought is highly pol-
ysemic in common language. It may refer, for ex-
ample, to a belief, to an idea or to the content of the
conscious mind. Due to this difficulty, the mere no-
tion of thought has not been a principal or directed
object of study in neuroscience, although of course
it is always present implicitly, vaguely, without a
formal definition.
Here we do not intend to elaborate an extensive

review on the philosophical and biological concep-
tions of thoughts (see [30] for a good review on
thoughts). Nor are we in a theoretical position
to provide a full formal definition of a thought.
Instead, we point to the key assumptions of our
framework about the nature of thoughts. This
accounts to defining constraints in the class of
thoughts which we aim to describe. In other words,
we do not claim to provide a general theory of hu-
man thoughts (which is not amenable at this stage
lacking a full definition of the class) but rather of a
subset of thoughts which satisfy certain constraints
defined below.
For instance, E.B. Titchener and W. Wundt, the

founders of structuralist school in psychology (seek-
ing structure in the mind without evoking meta-
physical conceptions, a tradition which we inherit
and to which we adhere), believed that thoughts

were images (there are not imageless thoughts) and
hence can be broken down to elementary sensations
[30]. While we do not necessarily agree with this
propositions (see Carey [31] for more contemporary
versions denying the sensory foundations of concep-
tual knowledge), here we do not intend to explain
all possible thoughts but rather a subset, a sim-
pler class which —in agreement with the Wundt
and Titchener— can be expressed in images. More
precisely, we develop a theory which may account
for Boole’s [32] notion of thoughts as propositions
and statements about the world which can be rep-
resented symbolically. Hence, a first and crucial
assumption of our framework is that thoughts are
discrete. Elsewhere we have extensively discussed
[33–39] how the human brain, whose architecture is
quite different from Turing machines, can emerge in
a form of computation which is discrete, symbolic
and resembles Turing devices.

Second, here we focus on the notion of “prop-
less” mental activity, i.e., whatever (symbolic) com-
putations can be carried out by humans without
resorting to external aids such as paper, marbles,
computers or books. This is done by actually
asking participants to perform the task “in their
heads”. Again, this is not intended to set a proposi-
tion about the universality of human thoughts but,
instead, a narrower set of thoughts which we con-
ceive is theoretically addressable in this mathemat-
ical framework.

Summarizing:

1. We think we do not have a good mathematical
(even philosophical) conception of thoughts, as
mental structures, yet.

2. Intuitively (and philosophically), we adhere
to a materialistic and computable approach
to thoughts. Broadly, one can think (to pic-
ture, not to provide a formal framework) that
thoughts are formations of the mind with
certain stability which defines distinguishable
clusters or objects [40–42].

3. While the set of such objects and the rules
of their transitions may be of many different
forms (analogous, parallel, unconscious, un-
linked to sensory experience, non-linguistic,
non-symbolic), here we work on a subset of
thoughts, a class defined by Boole’s attempt
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to formalize thought as symbolic propositions
about the world.

4. This states —which may correspond to hu-
man “conscious rational thoughts”, the seed
of Boole and Turing foundations [34,34]— are
discrete and defined by symbols and poten-
tially represented by a Turing device.

5. We focus on an even narrower space of
thoughts. Binary formations (right or left, zero
or one) to focus on what kind of language bet-
ter describes these transitions. This work can
be naturally extended to understand discrete
transitions in conceptual formations [43–45].

6. We concentrate on prop-less mental activity
to understand limitations of the human mind
when it does not have evident external support
(paper, computer...)

IV. Implementing a language

of thought with Turing-

computable complexity

As explained in section II.i., Kolmogorov complex-
ity considers all possible computable compressors
and assigns to a string x the length of the short-
est of the corresponding compressions. This seems
to be a perfect theory of compression but it has
a drawback: the function KU is not computable,
that is, there is no effective procedure to calculate
KU (x) given x.
On the other hand, the definition of randomness

introduced in section II.i., having very deep and
intricate connections with algorithmic information
and computability theories, is simply too strong to
explain our own perception of randomness. To de-
tect that x3 consists of the first twenty bits of π is
incompatible with human patterns of thought.
Hence, the intrinsic algorithms (or observed pat-

terns) which make human sequences not random
are too restricted to be accounted by a universal
machine and may be better described by a specific
machine. Furthermore, our hypothesis is that each
person uses his own particular specific machine or
algorithm to generate a random string.
As a first step in this complicated enterprise, we

propose to work with a specific language LT2C2

which meets the following requirements:

• LT2C2 must reflect some plausible features of
our mental activity when finding succinct de-
scriptions of words. For instance, finding rep-
etitions in a sequence such as x2 seems to be
something easy for our brain, but detecting nu-
merical dependencies between its digits as in
x3 seems to be very unlikely.

• LT2C2 must be able to describe any string in
{0, 1}∗. This means that the map given by

the induced machine N
def

= NLT2C2 must be
surjective.

• N must be simple enough so that KN —the
Kolmogorov complexity relative to N— be-
comes computable. This requirement clearly
makes LT2C2 Turing incomplete, but as we
have seen before, this is consistent with human
deviations from randomness.

• The rate of compression given by KN must be
sensible for very short strings, since our exper-
iments will produce such strings. For instance,
the approach, followed in [46], of using the
size of the compressed file via general-purpose
compressors like Lempel-Ziv based dictionary
(gzip) or block based (bzip2) to approximate
the Kolmogorov complexity does not work in
our setting. This method works best for long
files.

• LT2C2 should have certain degrees of freedom,
which can be adjusted in order to approximate
the specific machine that each individual fol-
lows during the process of randomness gener-
ation.

We will not go into the details on how to codify
the instructions of LT2C2 into binary strings of N :
for the sake of simplicity we take N as a surjec-
tive total mapping LT2C2 → {0, 1}∗. We restrict
ourselves to describe the grammar and semantics
of our proposed programming language LT2C2. It
is basically an imperative language with only two
classes of instructions: a sort of print i, which prints
the bit i in the output; and a sort of repeat n times

P , which for a fixed n ∈ N it repeats n times the
program P . The former is simply represented as i
and the latter as (P )n.
Formally, we set the alphabet {0, 1, (, ),0 , . . . ,9 }

and define LT2C2 over such alphabet with the fol-
lowing grammar:
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P ::= ǫ | 0 | 1 | PP | (P )n,

where n > 1 is the decimal representation of n ∈
N and ǫ denotes the empty string. The semantics
of LT2C2 is given through the behavior of N as
follows:

N(i)
def

= p for i ∈ {ǫ, 0, 1}

N(P1P2)
def

= N(P1)
aN(P2)

N((P )n)
def

= N(P )a · · ·aN(P )
︸ ︷︷ ︸

n times

.

N is not universal, but every string x has a pro-
gram in N which describes it: namely x itself.
Furthermore, N is monotone in the sense that if
p, q ∈ LT2C2 then N(p) is a prefix of N(paq). In
Table 1, the first column shows some examples of
N -programs which compute 1001001001.

program size

1001001001 10
(100)21(0)21 6.6

(100)31 4.5
1((0)21)3 3.8

Table 1: Some N -descriptions of 1001001001 and
its sizes for b = r = 1

i. Kolmogorov complexity for LT2C2

The Kolmogorov complexity relative to N (and
hence to the language LT2C2) is defined as

KN(x)
def

= min{‖p‖ : p ∈ LT2C2, N(p) = x},

where ‖p‖, the size of a program p, is inductively
defined as:

‖ǫ‖
def

= 0

‖p‖
def

= b for p ∈ {0, 1}

‖P1P2‖
def

= ‖P1‖+ ‖P2‖

‖(P )n‖
def

= r · logn+ ‖P‖.

In the above definition, b ∈ N, r ∈ R are two param-
eters that control the relative weight of the print

operation and the repeat n times operation. In the
sequel, we drop the subindex of KN and simply

write K
def

= KN . Table 1 shows some examples of
the size of N -programs when b = r = 1. Observe
that for all x we have K(x) ≤ ‖x‖.

It is not difficult to see that K(x) depends only
on the values of K(y), where y is any nonempty
and proper substring of x. Since ‖ ·‖ is computable
in polynomial time, using dynamic programming
one can calculate K(x) in polynomial time. This,
of course, is a major difference with respect to the
Kolmogorov complexity relative to a universal ma-
chine, which is not computable.

ii. From compression to prediction

As one can imagine, the perfect universal prediction
method described in section II.iii. is, again, non-
computable. We define a computable prediction
algorithm based on Solomonoff’s theory of induc-
tive inference but using K, the Kolmogorov com-
plexity relative to LT2C2, instead of KmU (which
depends on a universal machine). To predict the
next symbol of x ∈ {0, 1}∗, we follow the idea de-
scribed in section II.iii.: amongst all extrapolations
y of x we choose the one that minimizes K(xay).
If such y starts with 1, we predict 1, else we predict
0. Since we cannot examine the infinitely many ex-
trapolations, we restrict to those up to a fixed given
length ℓF . Also, we do not take into account the
whole x but only a suffix of length ℓP . Both ℓF and
ℓP are parameters which control, respectively, how
many extrapolation bits are examined (ℓF many
Future bits) and how many bits of the tail of x (ℓP
many Past bits) are considered.

Let {0, 1}n (resp. {0, 1}≤n) be the set of words
over the binary alphabet {0, 1} of length n (resp.
at most n). Formally, the prediction method is as
follows. Suppose x = x1 · · ·xn (xi ∈ {0, 1}) is a
string. The next symbol is determined as follows:

Next(x1 · · ·xn)
def

=







0 if m0 < m1;

1 if m0 > m1;

g(xn−ℓP
· · ·xn) otherwise.

where for i ∈ {0, 1},

mi
def

= min{K(xn−ℓP · · ·xni
ay) : y ∈ {0, 1}≤ℓF },
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and g : {0, 1}ℓP → {0, 1} is defined as g(z) = i if
the number of occurrences of i in z is greater than
the number of occurrences of 1− i in z; in case the
number of occurrences of 1s and 0s in z coincide
then g(z) is defined as the last bit of z.

V. Methods

Thirty eight volunteers (mean age = 24) partici-
pated in an experiment to examine the capacity of
LT2C2 to identify regularities in production of bi-
nary sequences. Participants were asked to produce
random sequences, without further instruction.
All the participants were college students

or graduates with programming experience and
knowledge of the theoretical foundations of ran-
domness and computability. This was intended to
test these ideas in a hard sample where we did not
expect typical errors which results from a misun-
derstanding of chance.
The experiment was divided in four blocks. In

each block the participant pressed freely the left or
right arrow 120 times.
After each key press, the participant received a

notification with a green square which progressively
filled a line to indicate the participant the number
of choices made. At the end of the block, partic-
ipants were provided feedback of how many times
the predictor method has correctly predicted their
input. After this point, a new trial would start.
38 participants performed 4 sequences, yielding a

total of 152 sequences. 14 sequences were excluded
from analysis because they had an extremely high
level of predictability. Including these sequences
would have actually improved all the scores re-
ported here.
The experiment was programmed in Action-

Script and can be seen at http://gamesdata.

lafhis-server.exp.dc.uba.ar/azarexp.

VI. Results

i. Law of large numbers

Any reasonable notion of randomness for strings on
base 2 should imply Borel’s normality, or the law
of large numbers in the sense that if x ∈ {0, 1}n

is random then the number of occurrences of any
given string y in x divided by n should tend to
2−|y|, as n goes to infinity.

A well-known result obtained in some investiga-
tions on generation or perception of randomness in
binary sequences is that people tend to increase the
number of alternations of symbols with respect to
the expected value [27]. Given a string x of length
n with r runs, there are n− 1 transitions between
successive symbols and the number of alternations
between symbol types is r − 1. The probability of
alternation of the string x is defined as

P (x) : {0, 1}≥2 → [0, 1]

P (x) = r−1
n−1 .

In our experiment, the average P (x) of participants
was 0.51, very close to the expected probability of
alternation of a random sequence which should be
0.5. A t-test on the P (x) of the strings produced by
participants, where the null hypothesis is that they
are a random sample from a normal distribution
with mean 0.5, shows that the hypothesis cannot be
rejected as the p-value is 0.31 and the confidence in-
terval on the mean is [0.49, 0.53]. This means that
the probability of alternation is not a good mea-
sure to distinguish participant’s strings from ran-
dom ones, or at least, that the participants in this
very experiment can bypass this validation.
Although the probability of alternation was close

to the expected value in a random string, partici-
pants tend to produce n-grams of length ≥ 2 with
probability distributions which are not equiprob-
able (see Fig. 1). Strings containing more alter-
nations (like 1010, 0101, 010, 101) and 3− and
4− runs have a higher frequency than expected by
chance. This might be seen as an effort from par-
ticipants to keep the probability of alternation close
to 0.5 by compensating the excess of alternations
with blocks of repetitions of the same symbol.

ii. Comparing human randomness with

other random sources

We asked whether K, the Kolmogorov complexity
relative to LT2C2 defined in section IV.i., is able
to detect and compress more patterns in strings
generated by participants than in strings produced
by other sources, which are considered random
for many practical issues. In particular, we stud-
ied strings originated by two sources: Pseudo-
Random Number Generator (PRNG) and Atmo-
spheric Noise (AN).
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Figure 1: Frequency of sub-strings up to length 4

For the PRNG source, we chose the Mersenne
Twister algorithm [47] (specifically, the second re-
vision from 2002 that is currently implemented in
GNU Scientific Library). The atmospheric noise
was taken from random.org site (property of Ran-
domness and Integrity Services Limited) which also
runs real-time statistic tests recommended by the
US National Institute of Standards and Technol-
ogy to ensure the random quality of the numbers
produced over time.

In Table 2, we summarize our results using b = 1
and r = 1 for the parameters of K as defined in
section IV.i.

Participants PRNG AN

Mean µ 48.43 52.99 53.88
Std σ 6.62 3.06 2.87
1st quartile 45.30 50.42 51.88
Median 49.23 53.15 53.85
3rd quartile 51.79 55.21 55.79

Table 2: Values of K(x), where x is a string pro-
duced by participants, PRNG or AN sources

The mean and median of K increases when
comparing participant’s string with PRNG or AN
strings. This difference was significant, as con-
firmed by a t-test (p-value of 4.9 × 10−11 when
comparing participant’s sample with PRNG one,
a p-value of 1.2 × 10−15 when comparing partici-
pant’s with AN and a p-value of 1.4 × 10−2 when
comparing PRNG with AN sample).
Therefore, despite the simplicity of LT2C2, based

merely on prints and repeats, it is rich enough to
identify regularities of human sequences. The K

function relative to LT2C2 is an effective and sig-
nificant measure to distinguish strings produced by
participants with profound understanding in the
mathematics of randomness, from PRNG and AN
strings. As expected, humans produce less complex
(i.e., less random) strings than those produced by
PRNG or atmospheric noise sources.

iii. Mental fatigue

On cognitively demanding tasks, fatigue affects
performance by deteriorating the capacity to or-
ganize behavior [48–52]. Specifically, Weiss claim
that boredom may be a factor that increases non-
randomness [48]. Hence, as another test to the abil-
ity of K relative to LT2C2 to identify idiosyncratic
elements of human regularities, we asked whether
the random quality of the participant’s string dete-
riorated with time.
For each of the 138 strings x = x1 · · ·x120 (xi ∈

{0, 1}) produced by the participants, we measured
the K complexity of all the sub-strings of length 30.
Specifically, we calculated the average

K(xi · · ·xi+30) from the 138 strings for each
i ∈ [0, 90] (see Fig. 2), using the same parameters
as in section VI.ii. (b = r = 1), and compared
to the same sliding average procedure for PRNG
(Fig. 3) and AN sources (Fig. 4).
The sole source which showed a significant linear

regression was human generated data (see Table 3)
which, as expected, showed a negative correlation
indicating that participants produced less complex
or random strings over time (slope −0.007, p <

0.02).
The finding of a fatigue-related effect shows that

the unpropped, i.e., resource-limited, human Tur-
ing machine is not only limited in terms of the lan-
guage it can parse, but also in terms of the amount
of time it can dedicate to a particular task.
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Figure 2: Average of K(xi · · ·xi+30) for partici-
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Figure 3: Average of K(xi · · ·xi+30) for PRNG

iv. Predictability

In section IV.ii., we introduced a prediction method
with two parameters: ℓF and ℓP . A predictor based
on LT2C2 achieved levels of predictability close to
56% which were highly significant (see Table 4).
The predictor, as expected, performed at chance
for the control PRNG and AN data. This fit was
relatively insensitive to the values of ℓP and ℓF ,
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14.8

15

i

K

Figure 4: Average of K(xi · · ·xi+30) for AN

Participants PRNG AN

Mean slope -0.007 0.0016 -0.0005
p-value 0.02 0.5 0.8
CI [-0.01,-0.001] [-0.003,0.006] [-0.005,0.004]

Table 3: Predictability

contrary to our intuition that there may be a mem-
ory scale which would correspond in this framework
to a given length.

A very important aspect of this investigation, in
line with the prior work of [23], is to inquire whether
specific parameters are stable for a given individual.
To this aim, we optimized, for each participant,
the parameters using the first 80 symbols of the
sequence and then tested these parameters in the
second half of each segment (last 80 symbols of the
sequence)

After this optimization procedure, mean pre-
dictability increased significantly to 58.14% (p <

0.002, see Table 5). As expected, the optimization
based on partial data of PRNG and AN resulted in
no improvement in the classifier, which remained
at chance with no significant difference (p < 0.3,
p < 0.2, respectively).

Hence, while the specific parameters for compres-
sion vary widely across each individual, they show
stability in the time-scale of this experiment.

Participants PRNG AN

Mean µ 56.16 50.69 49.48
Std σ 0.07 0.02 0.02
1st quartile 49.97 48.84 48.30
Median 55.02 50.77 49.04
3rd quartile 59.75 52.21 50.46

Table 4: Average predictability

Participants PRNG AN

Mean µ 58.14 51.20 49.01
Std σ 0.07 0.04 0.03
1st quartile 52.88 48.56 47.11
Median 56.73 50.72 49.28

3rd quartile 62.02 53.85 50.48

Table 5: Optimized predictability
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VII. Discussion

Here we analyzed strings produced by participants
attempting to generate random strings. Partici-
pants had a profound understanding of randomness
and hence avoided typical misconceptions such as
exaggerating the number of alternations. We rea-
soned that remaining regularities would express the
algorithmic nature of human thoughts, revealed in
the form of specific patterns.
Our effort here was to bridge the gap between

Kolmogorov theory and psychology, developing a
concrete language, LT2C2, satisfying the follow-
ing requirements: 1) to be simple enough so that
the complexity of any given sequence can be com-
puted, 2) to be based on tangible operations of hu-
man reasoning ( printing, repeating, . . . ), 3) to
be sufficiently powerful to generate all possible se-
quences but not too powerful as to identify regu-
larities which would be invisible to humans.
More specifically, our aim is to develop a class

of languages with certain degrees of freedom which
can then be fit to an individual (or an individual
in a specific context and time). Here, we opted for
a comparably easier strategy by only allowing the
relative cost of each operation to vary. However, a
natural extension of this framework is to generate
classes of languages where structural and qualita-
tive aspects of the language are free to vary. For
instance, one can devise a program structure for
repeating portions of (not necessarily neighboring)
code, or considering the more general framework of
for-programs where the repetitions are more gen-
eral than in our setting: for i=1 to n do P (i), where
P is a program that uses the successive values of
i = 1, 2, . . . , n in each iteration. For instance, the
following program

for i=1 to 6 do

print ‘0’

repeat i times: print ‘1’

would describe the string

010110111011110111110111111.

The challenge from the computational theoretical
point of view is to define an extension which induces
a computable (even more, feasible, whenever possi-
ble) Kolmogorov complexity. For instance, adding
simple control structures like conditional jumps or

allowing the use of imperative program variables
may turn the language into Turing-complete, with
the theoretical consequences that we already men-
tioned. The aim is to keep the language simple and
yet include structures to compact some patterns
which are compatible with the human language of
thought.

We emphasize that our aim here was not to gen-
erate an optimal predictor of human sequences.
Clearly, restricting LT2C2 to a very rudimentary
language is not the way to go to identify vast classes
of patterns. Our goal, instead, was to use human
sequences to calibrate a language which expresses
and captures specific patterns of human thought in
a tangible and concrete way.

Our model is based on ideas from Kolmogorov
complexity and Solomonoff’s induction. It is im-
portant to compare it to what we think is the clos-
est and more similar approach in previous stud-
ies: the work [23] of Griffiths and Tenenbaum’s.
Griffiths and Tenenbaum devise a series of statisti-
cal models that account for different kind of reg-
ularities. Each model Z is fixed and assigns to
every binary string x a probability PZ(x). This
probabilistic approach is connected to Kolmogorov
complexity theory via Levin’s famous Coding The-
orem, which points out a remarkably numerical re-
lation between the algorithmic probability PU (x)
(the probability that the universal prefix Turing
machine U outputs x when the input is filled-up
with the results of coin tosses) and the (prefix) Kol-
mogorov complexity KU described in section II.i.
Formally, the theorem states that there is a con-
stant c such that for any string x ∈ {0, 1}∗ such
that

| − logPU (x)−KU (x)| ≤ c (4)

(the reader is referred to section 4.3.4 of [24] for
more details). Griffiths & Tenenbaum’s bridge to
Kolmogorov complexity is only established through
this last theoretical result: replacing PU by PZ in
Eq. (4) should automatically give us some Kol-
mogorov complexity KZ with respect to some un-
derlying Turing machine Z.

While there is hence a formal relation to Kol-
mogorov complexity, there is no explicit definition
of the underlying machine, and hence no notion of
program.

On the contrary, we propose a specific language
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of thought, formalized as the programming lan-
guage LT2C2 or, alternatively, as a Turing ma-
chine N , which assigns formal semantics to each
program. Semantics are given, precisely, through
the behavior of N . The fundamental introduc-
tion of program semantics and the clear distinc-
tion between inputs (programs of N) and outputs
(binary strings) allows us to give a straightfor-
ward definition of Kolmogorov complexity relative
toN , denotedKN , which —because of the choice of
LT2C2— becomes computable in polynomial time.
Once we count with a complexity function, we ap-
ply Solomonoff’s ideas of inductive inference to ob-
tain a predictor which tries to guess the continu-
ation of a given string under the assumption that
the most probable one is the most compressible in
terms of LT2C2-Kolmogorov complexity. As in [23],
we also make use of the Coding Theorem (4), but in
the opposite direction: given the complexity KN ,
we derive an algorithmic probability PN .
This work is mainly a theoretical development,

to develop a framework to adapt Kolmogorov ideas
in a constructive procedure (i.e., defining an ex-
plicit language) to identify regularities in human se-
quences. The theory was validated experimentally,
as three tests were satisfied: 1) human sequences
were less complex than control PRNG sequences,
2) human sequences were non-stationary, showing
decreasing values of complexity, 3) each individual
showed traces of algorithmic stability since fitting
of partial data was more effective to predict sub-
sequent data than average fits. Our hope is that
this theory may constitute, in the future, a useful
framework to ground and describe the patterns of
human thoughts.
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