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Revisiting the two-mass model of the vocal folds

M. F. Assaneo,* M. A. Trevisan'f

Realistic mathematical modeling of voice production has been recently boosted by ap-
plications to different fields like bioprosthetics, quality speech synthesis and pathological
diagnosis. In this work, we revisit a two-mass model of the vocal folds that includes accu-
rate fluid mechanics for the air passage through the folds and nonlinear properties of the
tissue. We present the bifurcation diagram for such a system, focusing on the dynamical
properties of two regimes of interest: the onset of oscillations and the normal phonation
regime. We also show theoretical support to the nonlinear nature of the elastic properties
of the folds tissue by comparing theoretical isofrequency curves with reported experimental

data.

I. Introduction

In the last decades, a lot of effort was devoted to de-
velop a mathematical model for voice production.
The first steps were made by Ishizaka and Flana-
gan [1], approximating each vocal fold by two cou-
pled oscillators, which provide the basis of the well
known two-mass model. This simple model repro-
duces many essential features of the voice produc-
tion, like the onset of self sustained oscillation of
the folds and the shape of the glottal pulses.
Early analytical treatments were restricted to
small amplitude oscillations, allowing a dimen-
sional reduction of the problem. In particular, a
two dimensional approximation known as the flap-
ping model was widely adopted by the scientific
community, based on the assumption of a transver-
sal wave propagating along the vocal folds [2, 3].
Moreover, this model was also used to successfully
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explain most of the features present in birdsong
[4,5].

Faithful modeling of the vocal folds has recently
found new challenges: realistic articulatory speech
synthesis [6-8], diagnosis of pathological behavior
of the folds [9,10] and bioprosthetic applications
[11]. Within this framework, the 4-dimensional
two-mass model was revisited and modified. Two
main improvements are worth noting: a realistic
description of the vocal fold collision [13,14] and an
accurate fluid mechanical description of the glottal
flow, allowing a proper treatment of the hydrody-
namical force acting on the folds [8,15].

In this work, we revisit the two-mass model de-
veloped by Lucero and Koenig [7]. This choice rep-
resents a good compromise between mathematical
simplicity and diversity of physical phenomena act-
ing on the vocal folds, including the main mechani-
cal and fluid effects that are partially found in other
models [13,15]. It was also successfully used to
reproduce experimental temporal patterns of glot-
tal airflow. Here, we extend the analytical study
of this system: we present a bifurcation diagram,
explore the dynamical aspects of the oscillations
at the onset and normal phonation and study the
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isofrequency curves of the model.

This work is organized as follows: in the second
section, we describe the model. In the third sec-
tion, we present the bifurcation diagram, compare
our solutions with those of the flapping model ap-
proximation and analyze the isofrecuency curves.
In the fourth and last section, we discuss our re-
sults.

II. The model

Each vocal fold is modeled as two coupled damped
oscillators, as sketched in Fig. 1.
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Figure 1: Sketch of the two-mass model of the vo-
cal folds. Each fold is represented by masses m;
and mo coupled to each other by a restitution force
k. and to the laryngeal walls by K7 and K» (and
dampings By and Bs), respectively. The displace-
ment of each mass from the resting position xg is
represented by z; and xo. The different aerody-
namic pressures P acting on the folds are described
in the text.

Assuming symmetry with respect to the saggital
plane, the left and right mass systems are identical
(Fig. 1) and the equation of motion for each mass
reads

Ty = Ui (1)
Ui = mi Ufi — Ki(xs) — Bi(i, i) — ke(zi — x5)],

for 4,5 = 1 or 2 for lower and upper masses, re-
spectively. K and B represent the restitution and
damping of the folds tissue, f the hydrodynamic

force, m is the mass and k. the coupling stiffness.
The horizontal displacement from the rest position
xo is represented by x.

We use a cubic polynomial for the restitution
term [Eq. (2)], adapted from [1,7]. The term with
a derivable step-like function © [Eq. (3)] accounts
for the increase in the stiffness introduced by the
collision of the folds. The restitution force reads

+6 (9512'330> Bki(wi + w0)[1+ 500(w; + w0)°],
0

with

ifx<0
ifzx>0
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where zq is the rest position of the folds.

For the damping force, we have adapted the ex-
pression proposed in [7], making it derivable, arriv-
ing at the following equation:

Bi(z;) = (4)

. 1
[1 +0e (x + IO) } ri(1 + 8502,2)y;,

Zo €;

where r; = 2¢;4/k;m;, and ¢; is the damping ratio.

In order to describe the hydrodynamic force that
the airflow exerts on the vocal folds, we have
adopted the standard assumption of small inertia of
the glottal air column and the model of the bound-
ary layer developed in [7,11,15]. This model as-
sumes a one-dimensional, quasi-steady incompress-
ible airflow from the trachea to a separation point.
At this point, the flow separates from the tissue
surface to form a free jet where the turbulence dis-
sipates the airflow energy. It has been experimen-
tally shown that the position of this point depends
on the glottal profile. As described in [15], the
separation point located at the glottal exit shifts
down to the boundary between masses m; and msy
when the folds profile becomes more divergent than
a threshold [Eq. (7)].

Viscous losses are modeled according to a bi-
dimensional Poiseuille flow [Egs. (6) and (7)]. The
equations for the pressure inside the glottis are
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As sketched in Fig. 1, the pressures exerted by
the airflow are: P;, at the entrance of the glottis,
Py5 at the upper edge of mq, P»1 at the lower edge
of mo, P,,: at the entrance of the vocal tract and
P the subglottal pressure.

The width of the folds (in the plane normal to
Fig. 1) is ly; di and dy are the lengths of the lower
and upper masses, respectively. a; are the cross-
sections of the glottis, a; = 2ly(x; + xo); 1 and p
are the viscosity and density coefficient of the air;
ug is the airflow inside the glottis, and ks = 1.2 is an
experimental coefficient. We also assume no losses
at the glottal entrance [Eq. (5)], and zero pressure
at the entrance of the vocal tract [Eq. (8)].

The hydrodynamic force acting on each mass
reads:

£ = dilgPs if 1 < —x9 or x2 < —29 )
b w in other case
dolg Py if x1 > —x0 and 22 < —x0
f2 - 0 lf A S —Zo
% in other case

(10)

Following [1, 7, 10], these functions represent
opening, partial closure and total closure of the
glottis. Throughout this work, piecewise functions
Ps1, f1 and fy are modeled using the derivable step-
like function © defined in Eq. (3).

III. Analysis of the model

i. Bifurcation diagram

The main anatomical parameters that can be ac-
tively controlled during the vocalizations are the

subglottal pressure P and the folds tension con-
trolled by the laryngeal muscles. In particular, the
action of the thyroarytenoid and the cricothyroid
muscles control the thickness and the stiffness of
folds. Following [1], this effect is modeled by a pa-
rameter () that scales the mechanic properties of
the folds by a cord-tension parameter: k. = Qk.q,
k; = Qk;o and m; = %0 We therefore performed a
bifurcation diagram using these two standard con-
trol parameters Py and Q).

Five main regions of different dynamic solutions
are shown in Fig. 2. At low pressure values (re-
gion I), the system presents a stable fixed point.
Reaching region II, the fixed point becomes un-
stable and there appears an attracting limit cycle.
At the interface between regions I and II, three
bifurcations occur in a narrow range of subglot-
tal pressure (Fig. 3, left panel), all along the @
axis. The right panel of Fig. 3 shows the oscilla-
tion amplitude of x5. At point A, oscillations are
born in a supercritical Hopf bifurcation. The am-
plitude grows continuously for increasing Ps until
point B, where it jumps to the upper branch. If the
pressure is then decreased, the oscillations persist
even for lower pressure values than the onset in A.
When point C is reached, the oscillations suddenly
stop and the system returns to the rest position.
This onset-offset oscillation hysteresis was already
reported experimentally in [12].

The branch AB depends on the viscosity. De-
creasing u, points A and B approach to each other
until they collide at p = 0, recovering the result re-
ported in [3,10,14], where the oscillations occur as
the combination of a subcritical Hopf bifurcation
and a cyclic fold bifurcation.

On the other hand, the branch BC depends on
the separation point of the jet formation. In par-
ticular, for increasing kg, the folds become stiffer
and the separation point moves upwards toward the
output of the glottis. From a dynamical point of
view, points C and B approach to each other until
they collapse. In this case, the oscillations are born
at a supercritical Hopf bifurcation and the system
presents no hysteresis, as in the standard flapping
model [17].

Regions IT and IIT of Fig. 2 are separated by
a saddle-repulsor bifurcation. Although this bifur-
cation does not represent a qualitative dynamical
change for the oscillating folds, its effects are rele-
vant when the complete mechanism of voiced sound
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Figure 2: Bifurcation diagram in the plane of sub-
glottal pressure and fold tension (Q,Ps). The in-
sets are two-dimensional projections of the flow on
the (v1,z1) plane, the red crosses represent unsta-
ble fixed points and the dotted lines unstable limit
cycles. Normal voice occurs at (Q, Ps) ~ (1,800).
The color code represents the linear correlation be-
tween (1 — x2) and (y1 + y2): from dark red for
R = 1 to dark blue for R = 0.6. This diagram
was developed with the help of AUTO continuation
software [20]. The rest of the parameters were fixed
at my = 0.125 g, ma = 0.025 g, k1o = 80 N/m,
1{320 =38 N/Hl7 k’c = 25 1\I/Hl7 €1 = 0.1, €y = 0.6,
lyg =14 cm, di = 0.25 cm, d2 = 0.05 cm and
zo = 0.02 cm.

production is considered. Voiced sounds are gener-
ated as the airflow disturbance produced by the
oscillation of the vocal folds is injected into the se-
ries of cavities extending from the laryngeal exit to
the mouth, a non-uniform tube known as the vocal
tract. The disturbance travels back and forth along
the vocal tract, that acts as a filter for the origi-
nal signal, enhancing the frequencies of the source
that fall near the vocal tract resonances. Voiced
sounds are in fact perceived and classified accord-
ing to these resonances, as in the case of vowels [18].
Consequently, one central aspect in the generation
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Figure 3: Hysteresis at the oscillation onset-offset.
Left panel: zoom of the interface between regions I
and II. The blue and green lines represent folds of
cycles (saddle-node bifurcations in the map). The
red line is a supercritical Hopf bifurcation. Right
panel: the oscillation amplitude of x5 as a function
of the subglottal pressure P;, at Q = 1.71. The
continuation of periodic solutions was realized with
the AUTO software package [20].

of voiced sounds is the production of a spectrally
rich signal at the sound source level.

Interestingly, normal phonation occurs in the re-
gion near the appearance of the saddle-repulsor bi-
furcation. Although this bifurcation does not al-
ter the dynamical regime of the system or its time
scales, we have observed that part of the limit cy-
cle approaches the stable manifold of the new fixed
point (as displayed in Fig. 4), therefore changing
its shape. This deformation is not restricted to the
appearance of the new fixed point but rather oc-
curs in a coarse region around the boundary be-
tween II and III, as the flux changes smoothly in
a vicinity of the bifurcation. In order to illustrate
this effect, we use the spectral content index SCI
[21], an indicator of the spectral richness of a sig-
nal: SCI =3, Aifi/(>, Axfo), where Ay, is the
Fourier amplitude of the frequency fr and fy is
the fundamental frequency. As the pressure is in-
creased, the SCI of z1(t) increases (upper right
panel of Fig. 4), observing a boost in the vicinity of
the saddle-repulsor bifurcation that stabilizes after
the saddle point is generated.

Thus, the appearance of this bifurcation near the
region of normal phonation could indicate a possi-
ble mechanism to further enhance the spectral rich-
ness of the sound source, on which the production
of voiced sounds ultimately relies.
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Figure 4: A projection of the limit cycle for z; and
the stable manifold of the saddle point, for param-
eters consistent with normal phonatory conditions,
(Q, Ps) = (1,850) (region IIT). Left inset: projec-
tion in the 3-dimensional space (y1, x1, 22). Right
inset: Spectral content index of z1(¢) as a function
of P, for a fixed value of Q = 0.95. In green, the
value at which the saddle-repulsor bifurcation takes
place.

In the boundary between regions III and IV, one
of the unstable points created in the saddle-repulsor
bifurcation undergoes a subcritical Hopf bifurca-
tion, changing stability as an unstable limit cycle
is created [19]. Finally, entering region V, the sta-
ble and the unstable cycles collide and disappear in
a fold of cycles where no oscillatory regimes exist.

In Fig. 2, we also display a color map that quan-
tifies the difference between the solutions of the
model and the flapping approximation. The flap-
ping model is a two dimensional model that, instead
of two masses per fold, assumes a wave propagating
along a linear profile of the folds, i.e., the displace-
ment of the upper edge of the folds is delayed 27
with respect to the lower. The cross sectional areas
at glottal entry and exit (a1 and as) are approxi-
mated, in terms of the position of the midpoint of
the folds, by

{ a1 = 2lg(zo +x + 1) 7 (1)

as = 2lg(xo +x — 1)

where x is the midpoint displacement from equilib-

rium zg, and 7 is the time that the surface wave
takes to travel half the way from bottom to top.
Equation (11) can be rewritten as (r; — z3) =
7(y1 + y2). We use this expression to quantify the
difference between the oscillations obtained with
the two-mass model solutions and the ones gener-
ated with the flapping approximation, computing
the linear correlation coefficient between (z1 — x2)
and (y1 + y2). As expected, the correlation coeffi-
cient R decreases for increasing P or decreasing Q).
In the region near normal phonation, the approx-
imation is still relatively good, with R ~ 0.8. As
expected, the approximation is better for increasing
T, since the effect of colliding folds is not included
in the flapping model.

ii. Isofrequency curves

One basic perceptual property of the voice is the
pitch, identified with the fundamental frequency fy
of the vocal folds oscillation. The production of
different pitch contours is central to language, as
they affect the semantic content of speech, carry-
ing accent and intonation information. Although
experimental data on pitch control is scarce, it was
reported that it is actively controlled by the laryn-
geal muscles and the subglottal pressure. In par-
ticular, when the vocalis or interarytenoid muscle
activity is inactive, a raise of the subglottal pres-
sure produces an upraising of the pitch [16].

Compatible with these experimental results, we
performed a theoretical analysis using P; as a sin-
gle control parameter for pitch. In the upper pan-
els of Fig. 5, we show isofrequency curves in the
range of normal speech for our model of Egs. (1)
to (10). Following the ideas developed in [22] for
the avian case, we compare the behavior of the
fundamental frequency with respect to pressure P;
in the two most usual cases presented in the lit-
erature: the cubic [1,7] and the linear [10, 14]
restitutions. In the lower panels of Fig. 5, we
show the isofrequency curves that result from re-
placing the cubic restitution by a linear restitution
Ki(w;) = kiz; + @(zi;ifo)?)ki(fﬁz‘ + o).

Although the curves fo(Ps) are not affected by
the type of restitution at the very beginning of os-
cillations, the changes become evident for higher
values of Py, with positive slopes for the cubic case
and negative for the linear case. This result sug-
gests that a nonlinear cubic restitution force is a
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Figure 5: Relationship between pitch and restitu-
tion forces. Left panels: isofrequency curves in
the plane (Q,Ps). Right panels: Curves fo(Ps)
for Q=0.9, @=0.925 and @Q@=0.95. In the upper
panels, we used the model with the cubic nonlin-
ear restitution of Eq. (2). In the lower panels, we
show the curves obtained with a linear restitution,

KZ(LL'Z) = k;x; + 9(%:0)3]{?1(1‘1 + {,Co).

good model for the elastic properties of the oscil-
lating tissue.

IV. Conclusions

In this paper, we have analyzed a complete two-
mass model of the vocal folds integrating collisions,
nonlinear restitution and dissipative forces for the
tissue and jets and viscous losses of the air-stream.
In a framework of growing interest for detailed
modeling of voice production, the aspects studied
here contribute to understanding the role of the
different physical terms in different dynamical be-
haviors.

We calculated the bifurcation diagram, focusing
in two regimes: the oscillation onset and normal
phonation. Near the parameters of normal phona-
tion, a saddle repulsor bifurcation takes place that
modifies the shape of the limit cycle, contributing
to the spectral richness of the glottal flow, which is
central to the production of voiced sounds. With

respect to the oscillation onset, we showed how jets
and viscous losses intervene in the hysteresis phe-
nomenon.

Many different models for the restitution prop-
erties of the tissue have been used across the liter-
ature, including linear and cubic functional forms.
Yet, its specific role was not reported. Here we
showed that the experimental relationship between
subglottal pressure and pitch is fulfilled by a cubic
term.
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