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Invited review: KPZ. Recent developments via a variational formulation

Horacio S. Wio,1∗ Roberto R. Deza,2† Carlos Escudero,3‡ Jorge A. Revelli4§

Recently, a variational approach has been introduced for the paradigmatic Kardar–Parisi–
Zhang (KPZ) equation. Here we review that approach, together with the functional Taylor
expansion that the KPZ nonequilibrium potential (NEP) admits. Such expansion becomes
naturally truncated at third order, giving rise to a nonlinear stochastic partial differential
equation to be regarded as a gradient-flow counterpart to the KPZ equation. A dynamic
renormalization group analysis at one-loop order of this new mesoscopic model yields the
KPZ scaling relation α+ z = 2, as a consequence of the exact cancelation of the different
contributions to vertex renormalization. This result is quite remarkable, considering the
lower degree of symmetry of this equation, which is in particular not Galilean invariant.
In addition, this scheme is exploited to inquire about the dynamical behavior of the KPZ
equation through a path-integral approach. Each of these aspects offers novel points of
view and sheds light on particular aspects of the dynamics of the KPZ equation.

I. Introduction

Although readers whose careers span mostly on the
21th century might not care about this, back in
the sixties (when transistors and lasers had already
been invented) equilibrium critical phenomena were
still a puzzle. In fact, although a sense of “uni-
versality” had been gained in 1950 through a field
theory based on the innovative concept of order pa-
rameter [1,2], its predicted critical exponents were

∗E-mail: wio@ifca.unican.es
†E-mail: deza@mdp.edu.ar
‡E-mail: cel@icmat.es
§E-mail: revelli@famaf.unc.edu.ar

1 IFCA (UC-CSIC), Avda. de los Castros s/n, E-39005
Santander, Spain.

2 IFIMAR (UNMdP-CONICET), Funes 3350, 7600 Mar
del Plata, Argentina.
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almost as a rule wrong. It was not until the seven-
ties that a far more sophisticated field-theory ap-
proach [3] brought order home: equilibrium uni-
versality classes are determined solely by the di-
mensionalities of the order parameter and the am-
bient space. Since then, one of Statistical Physics’
“holy grials” has been to conquer a similar achieve-
ment for non-equilibrium critical phenomena [4]. In
such a (still unaccomplished) enterprise, a valuable
field-theoretical tool has been in the last quarter of
century the Kardar–Parisi–Zhang (KPZ) equation
[5–7].

The KPZ equation [5–7] has become a paradigm
for the description of a vast class of nonequilib-
rium phenomena by means of stochastic fields. The
field h(x, t), whose evolution is governed by this
stochastic nonlinear partial differential equation,
describes the height of a fluctuating interface in
the context of surface-growth processes in which
it was originally formulated. From a theoretical
point of view, the KPZ equation has many inter-
esting properties, for instance, its close relation-
ship with the Burgers equation [8] or with a dif-
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fusion equation with multiplicative noise, whose
field φ(x, t) can be interpreted as the restricted
partition function of the directed polymer prob-
lem [9]. Many of the efforts put in investigating
the behavior of its solutions were focused on ob-
taining the scaling laws and critical exponents in
one or more spatial dimensions [11–17]. However,
other questions of great interest are the develop-
ment of suitable algorithms for its numerical inte-
gration [18,19], the construction of particular solu-
tions [20–23], the crossover behavior between dif-
ferent regimes [10,24–26], as well as related ageing
and pinning phenomena [27–29].

Among all the classical theoretical developments
concerning this equation [6, 7], two have recently
drawn our attention. One was the scaling relation
α + z = 2, which is expected to be exact for the
KPZ equation in any dimension. The exactness
of this relation has been traditionally attributed
to the Galilean invariance of the KPZ equation.
Nevertheless, the assumed central role of this sym-
metry has been challenged in this as well as in
other nonequilibrium models from both a theoreti-
cal [30–33] and a numerical [34–36] point of view.
The second one is the generally accepted lack of ex-
istence of a suitable functional allowing to formu-
late the KPZ equation as a gradient flow. In fact,
a variational approach to the closely related Sun-
Guo-Grant [37] and Villain-Lai-Das Sarma [38, 39]
equations was developed in [40, 41] by means of a
geometric construction. In [46], a Lyapunov func-
tional (with an explicit density) was found for the
deterministic KPZ equation. Also, a nonequilib-
rium potential (NEP), a functional that allows the
formal writing of the KPZ equation as a (stochas-
tically forced) exact gradient flow, was introduced.

In this work we shortly review the consis-
tency constraints imposed by the nonequilibrium-
potential structure on discrete representations of
the KPZ equation and show that they lead to ex-
plicit breakdown of Galilean invariance, despite the
fact that the obtained numerical results are still
those of the KPZ universality class. A Taylor ex-
pansion of the previously introduced NEP has (in
terms of fluctuations) an explicit density and a
thought-provoking structure [47], and leads to an
equation of motion (for fluctuations, in the contin-
uum) with exact gradient-flow structure, but differ-
ent from the KPZ one. This equation has a lower
degree of symmetry: it is neither Galilean invariant

nor even translation invariant. Its scaling prop-
erties are studied by means of a dynamic renor-
malization group (DRG) analysis, and its critical
exponents fulfill at one-loop order the same scal-
ing relation α + z = 2 as those of the KPZ equa-
tion, despite the aforementioned lack of Galilean
invariance. The concern with stability leads us
to suggest the introduction of an equation related
to the Kuramoto-Sivashinsky one, also with exact
gradient-flow structure. We close this article ex-
posing some novel developments based on a path-
integral-like approach.

II. Brief review of the nonequilib-
rium potential scheme

Loosely speaking, the notion of NEP is an extension
to nonequilibrium situations of that of equilibrium
thermodynamic potential. In order to introduce it,
we consider a general system of nonlinear stochastic
equations (admitting the possibility of multiplica-
tive noises)

q̇ν = Kν(q) + gνi (q) ξi(t), ν = 1, . . . , n; (1)

where repeated indices are summed over. Equation
(1) is stated in the sense of Itô. The {ξi(t)}, i =
1, . . . ,m ≤ n are mutually independent sources of
Gaussian white noise with typical strength γ.

The Fokker–Planck equation corresponding to
Eq. (1) takes the form

∂P

∂t
= − ∂

∂qν
Kν(q)P +

γ

2

∂2

∂qν ∂qµ
Qνµ(q)P (2)

where P (q, t; γ) is the probability density of observ-
ing q = (q1, . . . , qn) at time t for noise intensity γ,
and Qνµ(q) = gνi (q) gµi (q) is the matrix of transport
coefficients of the system, which is symmetric and
non-negative. In the long time limit (t → ∞), the
solution of Eq. (2) tends to the stationary distri-
bution Pst(q). According to [42–44], the NEP Φ(q)
associated to Eq. (2) is defined by

Φ(q) = − lim
γ→0

γ lnPst(q, γ). (3)

In other words,

Pst(q) d
nq = Z(q) exp

[
−Φ(q)

γ
+O(γ)

]
dΩq,
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where Φ(q) is the NEP of the system and the pref-
actor Z(q) is defined as the limit

lnZ(q) = lim
γ→0

[
lnPst(q, γ) +

1

γ
Φ(q)

]
.

Here dΩq = dnq/
√
G(q) is the invariant volume el-

ement in the q-space and G(q) is the determinant of
the contravariant metric tensor (for the Euclidean
metric it is G = 1). It was shown [42] that Φ(q)
is the solution of a Hamilton–Jacobi-like equation
(HJE)

Kν(q)
∂Φ

∂qν
+

1

2
Qνµ(q)

∂Φ

∂qν
∂Φ

∂qµ
= 0,

and Z(q) is the solution of a linear first-order par-
tial differential equation depending on Φ(q) (not
shown here).

Equation (3) and the normalization condition en-
sure that Φ is bounded from below. Furthermore,
it follows that

dΦ(q)

dt
= Kν(q)

∂Φ(q)

∂qν
= −1

2
Qνµ(q)

∂Φ

∂qν
∂Φ

∂qµ
≤ 0,

i.e., Φ is a Lyapunov functional for the dynamics
of the system when fluctuations are neglected. Un-
der the deterministic dynamics, q̇ν = Kν(q), Φ de-
creases monotonically and takes a minimum value
on attractors. In particular, Φ must be constant
on all extended attractors (such as limit cycles or
strange attractors) [42].

An alternative way to look into this problem is
due to Ao [45]. The interesting feature of this ap-
proach is that it resorts neither to Pst(q) nor to the
small-noise limit, thus being applicable in principle
to more general situations.

III. Variational approach for KPZ

The Kardar–Parisi–Zhang (KPZ) equation reads

∂h(x, t)

∂t
= ν∇2h(x, t)+

λ

2
[∇h(x, t)]

2
+ξ(x, t), (4)

where ξ(x, t) is a Gaussian white noise, of
zero mean (〈ξ(x, t)〉 = 0) and correlation
〈ξ(x, t)ξ(x′, t′)〉 = 2γδ(x − x′)δ(t − t′). As it is
well known, this nonlinear differential equation de-
scribes the fluctuations of a growing interface with
a surface tension given by ν; λ is proportional to the
average growth velocity and arises because the sur-
face slope is paralleled transported in such a growth
process.

Lyapunov functional

The deterministic KPZ equation—obtained by set-
ting γ = 0—is exactly solvable by means of
the Hopf–Cole transformation (φ(x, t) = e

λ
2ν h(x,t),

which maps the nonlinear KPZ equation onto the
(deterministic) linear diffusion equation [5]

∂φ(x, t)

∂t
= ν∇2φ(x, t). (5)

Also, the multiplicative reaction-diffusion (RD)
equation

∂φ(x, t)

∂t
= ν∇2φ(x, t) + φ(x, t)ξ(x, t), (6)

which is associated to the directed polymer prob-
lem [6,7,9] results, using the inverse transformation
(h(x, t) = 2ν

λ lnφ(x, t)) to be mapped into the com-
plete KPZ equation (4).

The deterministic part of Eq. (6) (i.e., Eq. (5)),
can be written as

∂φ(x, t)

∂t
= −δF [φ(x, t)]

δφ(x, t)
, (7)

where F [φ(x, t)] is the Lyapunov functional of the
deterministic RD problem given by

F [φ(x, t)] =
ν

2

∫
[∇φ(x, t)]

2
dx.

Applying to this functional the above indicated in-
verse transformation we get [46]

F [h] =
λ2

8ν

∫
e
λ
ν h(x,t) [∇h(x, t)]

2
dx, (8)

that allows the KPZ equation to be written as

∂

∂t
h(x, t) = −Γ[h]

δF [h]

δh(x, t)
+ ξ(x, t). (9)

One can check the Lyapunov property Ḟ [h] ≤ 0,
with the motility Γ[h] given by

Γ[h] =

(
2ν

λ

)2

e−
λ
ν h(x,t),

and that its minimum is achieved by constant func-
tions. Hence we have a Lyapunov functional for
the deterministic KPZ equation that displays sim-
ple dynamics: the asymptotic stability of constant
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solutions indicates an approach to constant profiles
at long times, for arbitrary initial conditions. De-
spite this simplicity in the deterministic case, the
stochastic situation is far from trivial and gives rise
to self-affine fractal profiles. In particular, the ex-
istence of this Lyapunov functional provides no a
priori intuition on the stochastic dynamics.

The nonequilibrium potential

An alternative functional was also proposed in [46].
By starting from the functional Fokker-Planck
equation, we look for the stationary solution (in
fact steady-state solution), and after some integra-
tion by parts, it is possible to arrive to another form
of Lyapunov functional

Φ[h] =
ν

2

∫
dx (∇h)

2− λ
2

∫
dx

∫ h(x,t)

href

dψ (∇ψ)
2
.

(10)
It is somehow inspired in the analytical form of
“model A”, according to the classification of crit-
ical phenomena in [48]. Here, the interpretation
of the integral in the 2nd term on the rhs is∫

dx
∫ h(x,t)

href
dψ =

∑
j4x

∫ hj
href,j

dψj . According to

this definition, the KPZ equation can be formally
written as a stochastically forced gradient flow

∂

∂t
h(x, t) = − δΦ[h]

δh(x, t)
+ ξ(x, t). (11)

The functional so defined fulfills the Lyapunov con-

dition Φ̇[h] = −
(
δΦ[h]
δh(x,t)

)2

≤ 0 as well, and could

be identified as the nonequilibrium potential (NEP)
for the KPZ case [53,54].

We will not pursue here the development of rig-
orous result concerning the functional (10). Our
present interest falls in the calculation of quantities
of physical interest rather than in building a com-
pletely rigorous mathematical theory. It is worth
remarking that, as indicated in [46] and above, such
a form has a discrete definition. It is also interest-
ing to point out that analogous functionals involv-
ing functional integrals which are not carried out
explicitly were obtained for the problem of inter-
face fluctuations in random media [49–52].

NEP expansion

We now proceed to formally Taylor expand the
NEP defined in Eq. (10) around a given reference

(or initial) state, denoted by h0

Φ[h] =
ν

2

∫
dx (∇h)

2

−λ
2

∫
dx

∫ h(x,t)

h0

dψ (∇ψ)
2

≈ Φ[h0] + δΦ[h0] +
1

2
δ2Φ[h0]

+
1

6
δ3Φ[h0] + · · · . (12)

The successive terms in the expansion of Φ[h] are

δΦ[h0] = −
∫

dx

[
ν∇2h0 +

λ

2
(∇h0)

2

]
δh,

δ2Φ[h0] = −
∫

dx δh
(
ν∇2 + λ∇h0 · ∇

)
δh,

δ3Φ[h0] = −λ
∫

dx δh (∇δh)
2
. (13)

Clearly, for higher order (n ≥ 4) terms we have

δnΦ[h0] ≡ 0, (14)

indicating that this formal expansion has a natural
cut-off after the third order.

It is worth indicating that in this computation—
as in all the other computations within this work—
boundary terms vanish provided one of the follow-
ing types of boundary conditions is assumed: ho-
mogeneous Dirichlet boundary conditions, homo-
geneous Neumann boundary conditions, periodic
boundary conditions or an infinite space with the
derivatives of δh vanishing as they approach an in-
finite distance from the origin.

The reference state h0 is arbitrary (i.e., any ini-
tial condition), but it is particularly useful to take
it as one that makes δΦ[h0] = 0, that is: a solution
to the stationary counterpart of the deterministic
KPZ equation. The complete set of solutions is
h0 = c, where c is an arbitrary constant (arbitrary
up to the application of the boundary conditions,
whenever this consideration applies), what physi-
cally corresponds to a flat interface. Hence we have
(δh = h− h0)

Φ[h] = Φ[h0] +
1

2
δ2Φ[h0, δh] +

1

6
δ3Φ[h0, δh].

(15)
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The equation for fluctuations

From here we can define an effective NEP, which
drives the dynamics of the fluctuations δh and has
an explicit density. Clearly, it corresponds to the
last two terms in Eq. (15). To simplify the notation
we adopt u(x, t) := δh(x, t), and so the NEP reads

I[u] =

∫
dx

[
ν

2
− λ

6
u(x, t)

]
(∇u)

2
(16)

= −
∫

dxu(x, t)

[
ν∇2u+

λ

6
(∇u)

2

]
.

The deterministic equation for u results

∂u

∂t
= −δI[u]

δu
,

∂u

∂t
=

(
ν − λu

3

)
∇2u− λ

6
(∇u)2. (17)

Clearly, patterns like u0 = constant are stationary
solutions of Eq. (17): for all of them I[u] = 0, indi-
cating that all such states have the same “energy”.
Finally, let us remark that although the formal Tay-
lor expansion becomes naturally truncated at third
order, the deterministic KPZ equation is not re-
covered. We call the stochastic version of this new
equation “KPZW”.

There is a remarkable difference between both
equations (KPZ and Eq. (17)). It arises due to the
fact that in the first case we have a fixed equa-
tion for h and for any initial condition, while in
the second case we have a fixed initial condition
(u = 0) with a variable equation whose coef-
ficients depend on ho! (it is an equation for the
departure from the given initial condition). The
question of the relevance of this aspect to ageing
problems (as discussed for instance in [29]) arises
naturally. This point, worth to be analyzed, will
be the subject of further work.

Non-local kernel

In previous works [36,46] it was indicated that the
following functional, including a nonlocal contribu-
tion,

F [h] =

∫
Ω

{(
λ2

8ν

)
(∇h)

2
+ e−

λ
2ν h(x,t)

×
∫

Ω

dx′G(x,x′)e
λ
2ν h(x′,t)

}
e
λ
ν h(x,t)dx,

(18)

leads, after functional derivation, to a generalized
KPZ equation

∂th(x, t) = ν∇2h(x, t) +
λ

2
[∇h(x, t)]2

−e− λ
2ν h(x,t)

∫
Ω

dx′G(x,x′)e
λ
2ν h(x′,t)

+ξ(x, t). (19)

It was also shown that if the nonlocal kernel has
translational invariance (G(x,x′) = G(x−x′)), and
also, if it is of (very) “short” range, it can be ex-
panded as

G(x− x′) =

∞∑
n=0

A2nδ
(2n)(x− x′), (20)

with δ(n)(x−x′) = ∇nx′δ(x−x′), and where symme-
try properties were taken into account. Exploiting
this form of the kernel, and considering different
approximation orders, it is possible to recover con-
tributions having the same form as the ones arising
in several previous works, where scaling properties,
symmetry arguments, etc., have been used to dis-
cuss the possible contributions to a general form of
the kinetic equation [55–57]. Such different contri-
butions are tightly related to several of other pre-
viously studied equations, like the Sun–Guo–Grant
equation [37], as well as others [55,58].

We will not pursue this aspect here, but we will
briefly refer again to it in a forthcoming section.

IV. Discretization issues, symmetry
violation and all that

In this section we will review aspects related to
two main symmetries associated with the 1D KPZ
equation: Galilean invariance and the fluctuation–
dissipation relation. On the one hand, Galilean in-
variance has been traditionally linked to the ex-
actness of the relation α + z = 2 among the crit-
ical exponents, in any spatial dimensionality (the
roughness exponent α, characterizing the surface
morphology in the stationary regime, and the dy-
namic exponent z, indicating the correlation length
scaling as ξ(t) ∼ t1/z). However, this interpretation
has been criticized in this and other nonequilibrium
models [31, 32, 59]. On the other hand, the second
symmetry essentially tells us that in 1D, the non-
linear (KPZ) term is not operative at long times.
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Even when recognizing the interesting analytical
properties of the KPZ equation, it is clear that in-
vestigating the behavior of its solutions requires the
(stochastic) numerical integration of a discrete ver-
sion. Such an approach has been used ,e.g., to ob-
tain the critical exponents in one and more spatial
dimensions [10–15,60]. Although a pseudo-spectral
spatial discretization scheme has been recently in-
troduced [18, 61], real-space discrete versions of
Eq. (4) are still used for numerical simulations
[62, 63]. One reason is their relative ease of imple-
mentation and of interpretation in the case of non-
homogeneous substrates, for example a quenched
impurity distribution [64].

Consistency

Here, we use the standard, nearest-neighbor dis-
cretization prescription as a benchmark to eluci-
date the constraints to be obeyed by any spatial
discretization scheme, arising from the mapping be-
tween the KPZ and the diffusion equation (with
multiplicative noise) through the Hopf–Cole trans-
formation.

The standard spatially discrete version of Eq. (6)
is

φ̇j =
ν

a2
(φj+1 − 2φj + φj−1) +

λ
√
γ

2ν
φjξj , (21)

with 1 ≤ j ≤ N ≡ 0, because of the assumed peri-
odic b.c. (the implicit sum convention is not meant
in any of the discrete expressions). Here a is the
lattice spacing. Then, using the discrete version of
Hopf–Cole transformation φj(t) = exp

[
λ
2νhj(t)

]
,

we get

ḣj =
2ν2

λa2

(
eδ

+
j a + eδ

−
j a − 2

)
+
√
γ ξj , (22)

with δ±j ≡ λ
2νa (hj±1 − hj). By expanding the ex-

ponentials up to terms of order a2, and collecting
equal powers of a (observe that the zero-order con-
tribution vanishes) we retrieve

ḣj =
ν

a2
(hj+1 − 2hj + hj−1)

+
λ

4 a2

[
(hj+1 − hj)2 + (hj − hj−1)2

]
+
√
γ ξj . (23)

As we can see, the first and second terms on the
r.h.s. of Eq. (23) are strictly related by virtue of the

Hopf-Cole transformation. In other words, the dis-
crete form of the Laplacian in Eq. (21) constrains
the discrete form of the nonlinear term in the trans-
formed equation. Later we return, in another way,
to the tight relation between the discretization of
both terms. Known proposals [60] fail to comply
with this natural requirement.

An important feature of the Hopf–Cole transfor-
mation is that it is local, i.e., it involves neither
spatial nor temporal transformations. An effect of
this feature is that the discrete form of the Lapla-
cian is the same, regardless of whether it is applied
to φ or h.

The aforementioned criterion dictates the follow-
ing discrete form for F [φ] (the one just before Eq.
(8)), thus a Lyapunov function for any finite N

F [φ] =
ν

2

N∑
j=1

a
(
(∂xφ)2

)
j

=
ν

4a

N∑
j=1

[
(φj+1 − φj)2 + (φj − φj−1)2

]
.

(24)

It is a trivial task to verify that the Laplacian is
(∂2
xφ)j = −a−1∂φjF [φ]. Now, the obvious fact

that this functional can also be written as F [φ] =
ν

2 a

∑N
j=1(φj+1 − φj)

2 illustrates a fact that for a
more elaborate discretization requires explicit cal-
culations: the Laplacian does not uniquely deter-
mine the Lyapunov function [34–36].

Equation (22) has also been written in [14], al-
though with different goals than ours. Their in-
terest was to analyze the strong coupling limit via
mapping to the directed polymer problem.

An accurate consistent discretization

Since the proposals of [60] already involve next-to-
nearest neighbors, one may seek for a prescription
that minimizes the numerical error. An interesting
choice for the Laplacian is [65]

1

12 a2
[16(φj+1 + φj−1)− (φj+2 + φj−2)− 30φj ] ,

(25)
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which has the associated discrete form for the KPZ
term

(∂xφ)2 =
1

24 a2

{
16
[
(φj+1 − φj)2

+(φj − φj−1)2
]

−
[
(φj+2 − φj)2 + (φj − φj−2)2

]}
+O(a4). (26)

Replacing this into the first line of Eq. (24), we ob-
tain Eq. (25). Since this discretization scheme ful-
fills the consistency conditions, it is accurate up to
O(a4) corrections, and its prescription is not more
complex than other known proposals, we expect
that it will be the convenient one to use when high
accuracy is required in numerical schemes [34–36].

Relation with the Lyapunov functional

In Sect. III we have indicated the form of the NEP
for KPZ, and the way in which the functionals F [φ]
and F [h] are related [46]. According to the previous
results, we can write the discrete version of Eq. (8)
as

F [h] =
λ2

8ν

1

2 a

∑
j

e
λ
ν hj

[
(hj+1 − hj)2

+(hj − hj−1)2
]
.

Introducing this expression into ∂thj = Γj
δF [h]
δhj

,

and through a simple algebra, we obtain Eq. (23).
This reinforces our previous result, and moreover
indicates that the discrete variational formulation
naturally leads to a consistent discretization of the
KPZ equation.

The fluctuation–dissipation relation

This relation is, together with Galilean invariance,
a fundamental symmetry of the one-dimensional
KPZ equation. It is clear that both symmetries
are recovered when the continuum limit is taken in
any reasonable discretization scheme. Thus, an ac-
curate enough partition must yield suitable results.

The stationary probability distribution for the
KPZ problem in 1D is known to be [6, 7]

Pstat[h] ∼ exp

{
− ν

2 γ

∫
dx (∂xh)

2

}
.

For the discretization scheme in Eq. (23), this is

∼ exp

 ν

2ε

1

2a

∑
j

[
(hj+1 − hj)2 + (hj − hj−1)2

] .

(27)
Inserting this expression into the stationary
Fokker–Planck equation, the only surviving term
has the form

1

2a3

∑
j

[
(hj+1 − hj)2 + (hj − hj−1)2

]
× [hj+1 − 2hj + hj−1] . (28)

The continuum limit of this term is
∫
dx (∂xh)

2
∂2
xh,

that is identically zero [6, 7]. A numerical analy-
sis of Eq. (28) indicates that it is several orders of
magnitude smaller than the value of the exponents’
pdf [in Eq. (27)], and typically behaves as O(1/N),
where N is the number of spatial points used in the
discretization. Moreover, it shows an even faster
approach to zero if expressions with higher accu-
racy [like Eqs. (25) and (26)] are used for the dif-
ferential operators. In addition, when the discrete
form of (∂xh)2 from [60] is used together with its
consistent form for the Laplacian, the fluctuation–
dissipation relation is not exactly fulfilled. This
indicates that the problem with the fluctuation–
dissipation theorem in 1 + 1, discussed in [18, 60]
can be just circumvented by using more accurate
expressions.

Galilean invariance

This invariance means that the transformation

x→ x−λvt, h→ h+ vx, F → F − λ
2
v2, (29)

where v is an arbitrary constant vector field, leaves
the KPZ equation invariant. The equation ob-
tained using the classical discretization

∂xh→
1

2 a
(hj+1 − hj−1), (30)

is invariant under the discrete Galilean transforma-
tion

ja→ ja− λvt, hj → hj + vja, F → F − λ

2
v2.

(31)
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However, the associated equation is known to be
numerically unstable [14], at least when a is not
small enough. Besides, Eq. (23) is not invariant un-
der the discrete Galilean transformation. In fact,
the transformation h → h + vja yields an excess
term which is compatible with the gradient dis-
cretization in Eq. (30); however, this discretization
does not allow to recover the quadratic term in Eq.
(23), indicating that this finite-difference scheme is
not Galilean-invariant.

Since Eq. (21) is invariant under the transfor-
mation indicated in Eq. (31), it is the nonlinear
Hopf–Cole transformation (within the present dis-
crete context) which is responsible for the loss of
Galilean invariance. Note that these results are in-
dependent of whether we consider this discretiza-
tion scheme or a more accurate one.

Galilean invariance has always been associated
with the exactness of the one-dimensional KPZ ex-
ponents, and with a relation that connects the crit-
ical exponents in higher dimensions [68]. If the nu-
merical solution obtained from a finite-difference
scheme as Eq. (23), which is not Galilean invari-
ant, yields the well known critical exponents, this
will be an indicative that Galilean invariance is not
strictly necessary to get the KPZ universality class.
The numerical results presented in [34–36] clearly
show that this is the case.

We will not discuss here the simulation procedure
but only indicate that to make the simulations we
introduced a discrete representation of h(x, t) along
the substrate direction x with lattice spacing a = 1,
and that a standard second-order Runge–Kutta al-
gorithm (with periodic boundary conditions) was
employed (see [66]). In [34–36] it was shown that
all the cases (consistent or not) exhibit the same
critical exponents. Moreover, we want to note that
the discretization used in Refs. [60], which also vi-
olates Galilean invariance, yields the same critical
exponents too. Additionally, stochastic differential
equations which are not explicitly Galilean invari-
ant have been shown to obey the relation α+z = 2
([33], see also next section). Hence, our numerical
analysis indicates that there are discrete schemes of
the KPZ equation which, even not obeying Galilean
invariance, show KPZ scaling.

The moral from the present analysis is clear: due
to the locality of the Hopf–Cole transformation, the
discrete forms of the Laplacian and the nonlinear
(KPZ) term cannot be chosen independently; more-

over, the prescriptions should be the same, regard-
less of the fields they are applied to. For further
details we refer to [34–36].

V. Renormalization-group analysis
for Fluctuations

In section III we have built a gradient flow counter-
part of the deterministic KPZ equation. In this sec-
tion we consider the corresponding stochastically
forced gradient flow

∂tu = −δI
δu

+ ξ(x, t), (32)

with the density indicated in Eq. (16). We obtain
the KPZW equation, which is the following SPDE

∂tu = ν∇2u− λ

6
(∇u)2 − λ

3
u∇2u+ ξ(x, t). (33)

Our present goal will be to analyze the scaling be-
havior of the fluctuations of the solution to this
equation.

Since Eq. (33) is nonlinear, we focus on a pertur-
bative technique. We choose the dynamic renor-
malization group as employed in [67, 68]. Employ-
ing this method, we find at one-loop order the fol-
lowing flow equations [47]

dλ

d`
= λ(α+ z − 2), (34)

dν

d`
= ν

(
z − 2− 1

36

λ2D

ν3
Kd

1− d
d

)
, (35)

dγ

d`
= γ

(
z − d− 2α+

Kd

72

λ2γ

ν3

)
, (36)

where Kd = Sd/(2π)d, Sd = 2πd/2/Γ(n/2) is the
surface area of the d−dimensional unit sphere, and
Γ is the gamma function. We find that the cou-
pling constant ḡ := Kdλ

2γ/ν3 obeys the one-loop
differential equation

dḡ

d`
= (2− d)ḡ +

6− 5d

72d
ḡ2, (37)

revealing that the critical dimension of this model
is dc = 2 as could be anticipated by means of
power counting. For d > 2 the coupling constant
approaches zero exponentially fast in the scale `;
for d = 2, this approach is algebraic. So for these
dimensions one expects the large-scale space-time
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properties of Eq. (33) to be dominated by its linear
counterpart (up to marginal corrections in d = 2).
In d = 1, the coupling constant runs to infin-
ity for finite `, suggesting the presence of a non-
perturbative fixed point (as the one in the KPZ
equation for d = 2).

The values of the critical exponents which yield
scale invariance can be formally calculated by iden-
tifying with zero the right hand sides of Eqs. (34)–
(36). We get

α =
2(2− d)(1− d)

6− 5d
, (38)

z =
12− 10d− 2(2− d)(1− d)

6− 5d
, (39)

which in particular obey the relation α + z = 2 in
any dimensionality, despite the fact that Eq. (33)
does not obey any sort of Galilean invariance. We
note that in both d = 1 and d = 2 it is α = 0
and z = 2, whereas α becomes negative in higher
dimensions. Hence, in all dimensions, the expo-
nent α indicates that the interface is either flat or
at most marginally rough. The values for d = 1
make both diffusion and nonlinearity in Eq. (33) in-
variant under the scale transformation {x, t, u} →
{bx, bzt, bαu}, as far as b > 1. In this case, the noise
grows with the scale (a fact that might explain the
growth of the coupling constant in the renormaliza-
tion group flow). In d = 2, the exponents are those
of the linear equation. An interesting result is that
for d = 0, the exponents become those of the KPZ
equation: α = 2/3 and z = 4/3, although this limit
is highly singular for Eq. (37). Of course, these
results have been obtained by means of a perturba-
tive dynamic renormalization group and could be
modified by non-perturbative contributions. One
possible path to study such a possibility could be to
adapt some non perturbative renormalization group
techniques used for KPZ [69] to the present KPZW
case.

Among all the results in this section, we would
like to highlight the one given by Eq. (34). We
recall that the RG analysis of the KPZ equation
yields non-renormalization of the vertex and renor-
malization of propagator and noise. Our variational
equation yields exactly the same result. Vertex
non-renormalization at one-loop order is expressed
by Eq. (34). The origin of this result is analo-
gous to that of its equivalent in the KPZ equa-
tion: three non-vanishing Feynman diagrams con-

tribute to vertex renormalization, but they cancel
out each other [5] (a fact that has been traditionally
attributed to the Galilean invariance of the KPZ
equation). Here we have shown that the same re-
sult appears in a SPDE that is not even invariant
under the translation u→ u+constant.

VI. Stability

We have carried out the NEP expansion about
a constant solution of the KPZ equation and
found that constants are still solutions to KPZW
(Eq. (17)). In this section we will study the linear
stability of such solutions. We start considering the
solution

u(x, t) = c+ ευ(x, t), (40)

where c is an arbitrary constant and ε is the small
parameter. Substituting in Eq. (17), we find

∂tυ =
3ν − λc

3
∇2υ, (41)

at first order in ε. So υ obeys a diffusion equa-
tion whose diffusion constant depends on c. For
c < 3ν/2λ, the diffusion constant is positive and
correspondingly the constant solution is linearly
stable. For c > 3ν/2λ, the diffusion constant is
negative and consequently the constant solution is
unstable. Furthermore, in this case the problem
becomes linearly ill posed.

Since for large values of c, the problem becomes
linearly ill posed, numerical solutions are not avail-
able. In order to solve this disadvantage, we could
include a higher order term in our problem. We
concentrate on the gradient flow

∂tu = −δJ
δu

+ ξ(x, t), (42)

with density

J [u] =
ν

2

∫
dx (∇u)2 − λ

6

∫
dx u(∇u)2

+
µ

2

∫
dx (∇2u)2, (43)

leading to the following equation

∂tu = ν∇2u− λ

6
(∇u)2 − λ

3
u∇2u− µ∇4u+ ξ(x, t).

(44)
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Note that the deterministic counterpart of this
fourth-order equation can be considered as a varia-
tional version of the Kuramoto-Sivashinsky equa-
tion. It is worth remarking that this ad hoc
construction resembles the one that, as indicated
in [46], could more formally be obtained by con-
sidering the expansion of a nonlocal, short range
interaction.

The regime of linear stability/instability of this
equation is identical to that of Eq. (33) but in this
case, the problem is always linearly well posed. Fur-
thermore, the term proportional to µ is presumably
irrelevant in the large spatiotemporal scale (as sim-
ple power counting of the linear terms reveals) so
the results of the previous RG analysis could possi-
bly hold for this case too. Anyway, due to the pres-
ence of the deterministic instability, further analy-
sis are needed in order to assure this (note that
both linear terms in the equation are stabilizing
and that this instability has its origin in the vertex
structure).

VII. Crossover: a path integral
point of view

Another recently discussed related aspect [70] is
based in a path-integral Monte Carlo-like method
for the numerical evaluation of the mean rugosity
and other typical averages whose approach, which
radically differs from one introduced before [71],
exploits some of our previous results [34–36]. Here
we limit ourselves to quote the temporally (µ) and
spatially (j) discrete form of the “stochastic action”

S[h] =
1

2τ

∑
j,µ

{hj,µ+1 − hj,µ

−τ [αLj,µ+1 + (1− α)Lj,µ]}2

−2ναNt

−ταλ
2

∑
j,µ

[hj+1,µ − 2hj,µ + hj−1,µ],

(45)

and briefly discuss the obtained numerical results.
τ is the time step, 0 < α < 1 a time-discretization
parameter meant to be fixed for explicit calculation
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Figure 1: Crossover-like behavior from EW to KPZ
regime for λ = 1, on a lattice of 1028 sites (ν = D =
1). Red solid line: KPZ action; blue dash-dotted
line: EW action; black-dotted line: difference.
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Figure 2: Same data as the previous figure. Solid
line: time T ∗ vs. λ; dashed line: trend for T ∗ ∼
λ−1.35, included for comparison.

[72,73], and Lj,µ the “stochastic Lagrangian”

Lj,µ = ν (hj+1,µ − 2hj,µ + hj−1,µ)

+
λ

4

[
(hj+1,µ − hj,µ)2

+(hj,µ − hj−1,µ)2
]
. (46)

Figure 1 shows the crossover-like behavior from
the Edwards–Wilkinson (EW) regime to the KPZ
one. We take as estimator of such a transition the
time at which the difference (dotted black line) be-
tween KPZ (red solid curve) and EW actions (blue
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dash-dotted line) crosses the EW one (it grossly
coincides with the time at which the asymptotes
cross). This estimator numerically agrees neither
with the results in [10] (where a value of φ ∼ 4 was
found) nor with the one in [24] (with φ ∼ 3, but
corresponding to a 2D case). In Fig. 2 we have
plotted the dependence of this estimator on λ. For
comparison, we have also included the trend for
λ−φ with φ = 1.35 (dotted line). Preliminary re-
sults for λ > 7 seem to indicate a marked change
in the value of φ, maybe a hint that the system is
entering a strong coupling region [71].

Short-time propagator

Our aim here is to work out a variant of the
method introduced in [70] by exploiting the first
form of Lyapunov functional found in [46], namely
Eq. (10), that leads us to Eq. (11), the full KPZ
equation.

Whereas Eq. (45) is valid whatever the value of
τ , we now seek for a simpler expression valid for
τ � 1. This idea parallels in some sense other
studies in the literature [71], but here we exploit
the functional F [h] of Eq. (8). We denote as
{h} = (h1,µ, h2,µ, . . . , hj,µ, . . . , hN,µ) the interface
configuration at time µ. The transition pdf be-
tween patterns h0 at t0 and hf at tf can be written
as

P ({hf}, tf |{h0}, t0) =∫
D[h] exp

(
− 1

γ

∫ tf

t0

L[h, ḣ]

)
, (47)

with

L[h, ḣ] =
1

2

∫ L

0

dx

[(
∂th+ Γ[h]

δ

δh
F [h]

)2

+α
δ

δh

(
Γ[h]

δ

δh
F [h]

)]
, (48)

whose discrete form is given by Eq. (46). A key ob-
servation is the (temporally and spatially) “diago-
nal” character of Eq. (9), highlighted in its discrete
version

ḣj(t) = −Γj
δF
δhj

+
√
γ ξj(t). (49)

Guided by Eq. (46), we propose the following form
of P ({hf}, tf |{h0}, t0) for τ � 1, or short-time

propagator (STP)

P (hf , τ |h0, 0) =∫ hf

h0

D[h]e

[
− 1

2γ

∫ τ
0
ds

∫ L
0
dx(∂th+Γ δFδh )

2
]

≈ exp
{
− τ

2γ

∫ L

0

dx[(
hf − h0

τ
+

1

2

[
Γf

δF
δhf

+ Γ0
δF
δh0

])2
]}
.

(50)

Here, for simplicity, we have chosen a discretiza-
tion with α = 0. As it is well known [72, 73], the
Jacobian of the transformation from the noise vari-
able to the height variable depends on α. With this
choice, the Jacobian results equal to 1.

Incidentally, the form in Eq. (50) coincides with
the discretization used in [71] for determining the
least-action trajectory. The “quasi-Gaussian” char-
acter of this STP is better evidenced in the follow-
ing approximate form

P (hf , tf = τ |h0, t0 = 0) ∼ e[−
1

2γτ

∫ L
0
dx(hf−h0)2]

×
{

1− 1

2γ

∫ L

0

dx

[
(hf − h0)

1

2

(
Γf

δF
δhf

+Γ0
δF
δh0

)
+O(τ)

]}
(51)

where the exponential term has been separated out
since it is of order τ−1, whereas the following two
are of order τ0 and τ1, respectively (of lesser weight
and negligible respectively, in the limit τ → 0). It
is worth remarking that the term that could come
from the Jacobian is also of order τ1.

It is easy to check that we can recover the known
FPE from the proposed form of STP (adopting
α = 0 for simplicity). We will not reiterate this cal-
culation here. An immediate result of this form is
that at very short times, behavior of the Edwards–
Wilkinson type is obtained√

〈h2〉 ≈ τ 1
2 .

VIII. Conclusions

Herein, in addition to reviewing some recent results
[34–36,47,70], we have furthered the study in [46],
where it was shown that the deterministic KPZ
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equation admits a Lyapunov functional, and a (for-
mal) definition of a nonequilibrium potential was in-
troduced. We have carried out a Taylor expansion
of such a nonequilibrium potential, what led us to
a different equation of motion than the KPZ one,
the KPZW which is an exact gradient flow and has
an explicit density. In particular, it has a lower de-
gree of symmetry: it is neither Galilean invariant,
nor even translational invariant. The critical ex-
ponents determining its scaling properties were ob-
tained through a one-loop dynamic renormalization
group analysis. These exponents fulfill the same
scaling relation as the KPZ equation, α + z = 2,
traditionally attributed to the Galilean invariance
of the latter. The fact that the same scaling rela-
tion arises in a SPDE (i.e., the KPZW) that is not
only non-Galilean invariant but even non-invariant
under the translation u → u+constant supports
recent theoretical and numerical results indicating
that Galilean invariance does not necessarily play
the relevant role previously assumed in defining the
universality class of the KPZ equation and different
nonequilibrium models [30–36].

We have, moreover, analyzed the stability prop-
erties of the solutions to the present equation, find-
ing the threshold condition for the appearance of
diffusive instabilities, which indicates that in this
case the problem becomes linearly ill posed. After
considering the simplest way to correct such an ill-
posed problem, we have met a kind of Kuramoto–
Sivashinsky equation, resembling the one that, as
indicated in [46], could be obtained by considering
a nonlocal, short range interaction. This equation
has an exact gradient flow structure with an explicit
density. Furthermore, when subject to stochastic
forcing, its scaling properties could be formally de-
scribed by the same critical exponents because the
stabilizing term is irrelevant in the large scale from
a dimensional analysis viewpoint.

Exploiting some elements of a path integral de-
scription of the problem, we have also shown what
seems to be a simple form of viewing and studying
the crossover from the EW to the KPZ regimes.

The present review-like study aims to open new
points of view on, as well as alternative routes to
study, the KPZ problem. Among the many aspects
to be further studied, an interesting one is to test
the (kind) of stability of the recently found exact
solutions [20–23] by exploiting the indicated form
of the NEP.
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