[1] L D Landau, E M Lifshitz, Statistical physics, Butterworth Heinemann, Oxford, 1980.

[2] L P Kadanoff, W Gotze, D Hamblen, R Hecht, E A S Leis, V V Palciauskas, M Rayl, J Swift, D Aspnes, J Kane, Static phenomena near critical points: Theory and experiment, Rev. Mod. Phys. 39, 395 (1967).
http://dx.doi.org/10.1103/RevModPhys.39.395

[3] K G Wilson, J Kogut, The renormalization group and the epsilon expansion, Phys. Rep. 12, 75 (1974);
http://dx.doi.org/10.1016/0370-1573(74)90023-4
K G Wilson, The renormalization group: Critical phenomena and the Kondo problem, Rev. Mod. Phys. 47, 773 (1975).
http://dx.doi.org/10.1103/RevModPhys.47.773

[4] J Marro, R Dickman, Nonequilibrium phase transitions in lattice models, Cambridge U. Press, Cambridge, UK (1999);
http://dx.doi.org/10.1017/CBO9780511524288
M Henkel, H Hinrichsen, S Lubeck, Nonequilibrium phase transitions - I, Springer, Berlin (2008);
M Henkel, M Pleimling, Nonequilibrium phase transitions - II, Springer, Berlin (2010);
G Odor, Universality in nonequilibrium lattice systems, World Scientific, Singapore (2008).

[5] M Kardar, G Parisi, Y-C Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56, 889 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.889

[6] T Halpin-Healy, Y-C Zhang, Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics, Phys. Rep. 254, 215 (1995).
http://dx.doi.org/10.1016/0370-1573(94)00087-J

[7] A-L Barabasi, H E Stanley, Fractal concepts in surface growth, Cambridge U. Press, Cambridge, UK (1995).
http://dx.doi.org/10.1017/CBO9780511599798

[8] V Gurarie, A Migdal, Instantons in the Burgers equation, Phys. Rev. E 54, 4908 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.4908

[9] M Kardar, Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities, Nucl. Phys. B 290, 582 (1987).
http://dx.doi.org/10.1016/0550-3213(87)90203-3

[10] B M Forrest, R Toral, Crossover and finite-size effects in the (1+1)-dimensional Kardar-Parisi-Zhang equation, J. Stat. Phys. 70, 703 (1993).
http://dx.doi.org/10.1007/BF01053591

[11] M Beccaria, G Curci, Numerical simulation of the Kardar-Parisi-Zhang equation, Phys. Rev. E 50, 4560 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.4560

[12] K Moser, D E Wolf, Vectorized and parallel simulations of the Kardar-Parisi-Zhang equation in 3+ 1 dimensions, J. Phys. A 27, 4049 (1994).
http://dx.doi.org/10.1088/0305-4470/27/ 12/013

[13] M Scalerandi, P P Delsanto, S Biancotto, Time evolution of growth phenomena in the KPZ model, Comput. Phys. Commun. 97, 195 (1996).
http://dx.doi.org/10.1016/0010-4655(96)00037-9

[14] T J Newman, A J Bray, Strong-coupling behaviour in discrete Kardar-Parisi-Zhang equations, J. Phys. A 29, 7917 (1996).
http://dx.doi.org/10.1088/0305-4470/29/24/016

[15] C Appert, Universality of the growth velocity distribution in 1+ 1 dimensional growth models, Comput. Phys. Commun. 121-122, 363 (1999).
http://dx.doi.org/10.1016/S0010-4655(99)00354-9

[16] E Marinari, A Pagnani, G Parisi, Critical exponents of the KPZ equation via multi-surface coding numerical simulations, J. Phys. A 33, 8181 (2000).
http://dx.doi.org/10.1088/0305-4470/33/46/303

[17] T J Oliveira, S G Alves, S C Ferreira, Kardar-Parisi-Zhang universality class in (2+1) dimensions: Universal geometry-dependent distributions and finite-time corrections, Phys. Rev. E 87, 040102 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.040102

[18] L Giada, A Giacometti, M Rossi, Pseudospectral method for the Kardar-Parisi-Zhang equation, Phys. Rev. E 65, 036134 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.036134

[19] V G Miranda, F D A Aarao Reis, Numerical study of the Kardar-Parisi-Zhang equation, Phys. Rev. E 77, 031134 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.031134

[20] T Sasamoto, H Spohn, One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality, Phys. Rev. Lett. 104, 230602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.230602

[21] T Sasamoto, H Spohn, The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class, J. Stat. Mech. P11013 (2010).
http://dx.doi.org/10.1088/1742-5468/2010/11/P11013

[22] G Amir, I Corwin, J Quastel, Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions, Commun. Pure Appl. Math. 64, 466 (2011).
http://dx.doi.org/10.1002/cpa.20347

[23] P Calabrese, P Le Doussal, Exact solution for the Kardar-Parisi- Zhang equation with flat initial conditions, Phys. Rev. Lett. 106, 250603 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.250603

[24] H Guo, B Grossmann, M Grant, Crossover scaling in the dynamics of driven systems, Phys. Rev. A 41, 7082 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.7082

[25] C M Horowitz, E V Albano, Relationships between a microscopic parameter and the stochastic equations for interface's evolution of two growth models, Eur. Phys. J. B 31, 563 (2003).
http://dx.doi.org/10.1140/epjb/e2003-00066-x

[26] F D A Aarao Reis, Scaling in the crossover from random to correlated growth, Phys. Rev. E 73, 021605 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.021605

[27] S Bustingorry, L Cugliandolo, J L Iguain, Out-of-equilibrium relaxation of the Edwards-Wilkinson elastic line, J. Stat. Mech. P09008 (2007);
http://dx.doi.org/10.1088/1742-5468/2007/09/P09008
S Bustingorry, Aging dynamics of non-linear elastic interfaces: The Kardar--Parisi--Zhang equation, J. Stat. Mech. 10002 (2007).
http://dx.doi.org/10.1088/1742-5468/2007/10/P10002

[28] S Bustingorry, P LeDoussal, A Rosso, Universal high-temperature regime of pinned elastic objects, Phys. Rev. B 82, 140201 (2010);
http://dx.doi.org/10.1103/PhysRevB.82.140201
S Bustingorry, A B Kolton, T Giamarchi, Random-manifold to random-periodic depinning of an elastic interface, Phys. Rev. B 82, 094202 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094202

[29] M Henkel, J D Noh, N Pleimling, Phenomenology of aging in the Kardar-Parisi-Zhang equation, Phys. Rev. E 85, 030102 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.030102

[30] W D McComb, Galilean invariance and vertex renormalization in turbulence theory, Phys. Rev. E 71, 037301 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.037301

[31] A Berera, D Hochberg, Gauge symmetry and Slavnov-Taylor identities for randomly stirred fluids, Phys. Rev. Lett. 99, 254501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.254501

[32] A Berera, D Hochberg, Gauge fixing, BRS invariance and Ward identities for randomly stirred flows, Nucl. Phys. B 814, 522 (2009).
http://dx.doi.org/10.1016/j.nuclphysb.2009.01.014

[33] M Nicoli, R Cuerno, M Castro, Unstable nonlocal interface dynamics, Phys. Rev. Lett. 102, 256102 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.256102

[34] H S Wio, J A Revelli, R R Deza, C Escudero, M S de La Lama, KPZ equation: Galilean-invariance violation, consistency, and fluctuation-dissipation issues in real-space discretization, Europhys. Lett. 89, 40008 ( 2010).
http://dx.doi.org/10.1209/0295-5075/89/40008

[35] H S Wio, J A Revelli, R R Deza, C Escudero, M S de La Lama, Discretization-related issues in the Kardar-Parisi-Zhang equation: Consistency, Galilean-invariance violation, and fluctuation-dissipation relation, Phys. Rev. E 81, 066706 (2010).
http://dx.doi.org/10.1103/PhysRevE.81.066706

[36] H S Wio, C Escudero, J A Revelli, R R Deza, M S de La Lama, Recent developments on the Kardar-Parisi-Zhang surface-growth equation, Phil. Trans. R. Soc. A 369, 396 (2011).
http://dx.doi.org/10.1098/rsta.2010. 0259

[37] T Sun, H Guo, M Grant, Dynamics of driven interfaces with a conservation law, Phys. Rev. A 40, 6763 (1989).
http://dx.doi.org/10.1103/PhysRevA.40.6763

[38] J Villain, Continuum models of crystal growth from atomic beams with and without desorption, J. Phys. I (France) 1, 19 (1991).
http://dx.doi.org/10.1051/jp1:1991114

[39] Z-W Lai, S Das Sarma, Kinetic growth with surface relaxation: Continuum versus atomistic models, Phys. Rev. Lett. 66, 2348 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2348

[40] C Escudero, Geometric principles of surface growth, Phys. Rev. Lett. 101, 196102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.196102

[41] C Escudero, E Korutcheva, Origins of scaling relations in nonequilibrium growth, J. Phys. A: Math. Theor. 45, 125005 (2012).
http://dx.doi.org/10.1088/1751-8113/45/12/125005

[42] R Graham, Weak noise limit and nonequilibrium potentials of dissipative dynamical systems, In: Instabilities and nonequilibrium structures, Eds. E Tirapegui, D Villaroel, D, Reidel Pub. Co., Dordrecht (1987).
http://dx.doi.org/10.1007/978-94-009-3783-3_12

[43] H S Wio, Nonequilibrium Potential in Reaction-Diffusion Systems, In: 4th Granada seminar in computational physics, Eds. P Garrido, J Marro, Pag. 135, Springer-Verlag, Berlin (1997).

[44] H S Wio, R R Deza, J M Lopez, Introduction to stochastic processes and nonequilibrium statistical physics, Revised Edition, World Scientific, Singapore (2013).

[45] P Ao, Potential in stochastic differential equations: novel construction, J. Phys. A 37, L25 (2004).
http://dx.doi.org/10.1088/0305-4470/37/3/L01

[46] H S Wio, Variational formulation for the KPZ and related kinetic equations, Int. J. Bif. Chaos 19, 2813 (2009).
http://dx.doi.org/10.1142/S0218127409024505

[47] C Escudero, E Korutcheva, H S Wio, R R Deza, J A Revelli, KPZ equation as a gradient flow: Nonequilibrium-potential expansion and renormalization-group treatment of fluctuations, unpublished.

[48] P Hohenberg, B Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49, 435 (1977).
http://dx.doi.org/10.1103/RevModPhys.49.435

[49] G Grinstein, S K Ma, Surface tension, roughening, and lower critical dimension in the random-field Ising model, Phys. Rev. B 28, 2588 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.2588

[50] J Koplik, H Levine, Interface moving through a random background, Phys. Rev. B 32, 280 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.280

[51] R Bruinsma, G Aeppli, Interface motion and nonequilibrium properties of the random-field Ising model, Phys. Rev. Lett. 52, 1547 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.1547

[52] D Kessler, H Levine, Y Tu, Interface fluctuations in random media, Phys. Rev. A 43, 4551 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.4551

[53] H S Wio, S Bouzat, B Von Haeften, Stochastic resonance in spatially extended systems: the role of far from equilibrium potentials, Physica A 306, 140 (2002).
http://dx.doi.org/10.1016/S0378-4371(02)00493-4

[54] H S Wio, R R Deza, Aspects of stochastic resonance in reaction-diffusion systems: The nonequilibrium-potential approach, Eur. Phys. J.-Spec. Top. 146, 111 (2007).
http://dx.doi.org/10.1140/epjst/e2007-00173-0

[55] H G E Hentschel, Shift invariance and surface growth, J. Phys. A: Math. Gen. 27, 2269 (1994).
http://dx.doi.org/10.1088/0305-4470/27/7/008

[56] S J Linz, M Raible, P Hanggi, Stochastic field equation for amorphous surface growth, In: Stochastic processes in physics, chemistry, and biology, Eds. J A Freund, T Poschel, 557, Pag. 473, Springer, Berlin (2000).

[57] J M Lopez, M Castro, R Gallego, Scaling of local slopes, conservation laws, and anomalous roughening in surface growth, Phys. Rev. Lett. 94, 166103 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.166103

[58] M Castro, J Munoz-Garcia, R Cuerno, M M Garcia-Hernandez, L Vazquez, Generic equations for pattern formation in evolving interfaces, New J. Phys. 9, 102 (2007).
http://dx.doi.org/10.1088/1367-2630/9/4/102

[59] E Hernandez-Garcia, T Ala-Nissila, M Grant, Interface roughening with a time-varying external driving force, Europhys. Lett. 21, 401 (1993).
http://dx.doi.org/10.1209/0295-5075/21/4/004

[60] C-H Lam, F G Shin, Improved discretization of the Kardar-Parisi-Zhang equation, Phys. Rev. E 58, 5592 (1998);
http://dx.doi.org/10.1103/PhysRevE.58.5592
C-H Lam, F G Shin, Formation and dynamics of modules in a dual-tasking multilayer feed-forward neural network, Phys. Rev. E, 57, 6506 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.6506

[61] R Gallego, M Castro, J M Lopez, Pseudospectral versus finite-difference schemes in the numerical integration of stochastic models of surface growth, Phys. Rev. E 76, 051121 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.051121

[62] S M A Tabei, A Bahraminasab, A A Masoudi, S S Mousavi, M R R Tabar, Intermittency of height fluctuations in stationary state of the Kardar-Parisi-Zhang equation with infinitesimal surface tension in 1+1 dimensions, Phys. Rev. E 70, 031101 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.031101

[63] K Ma, J Jiang, C B Yang, Scaling behavior of roughness in the two-dimensional Kardar--Parisi--Zhang growth, Physica A 378, 194 (2007).
http://dx.doi.org/10.1016/j.physa.2006.12.010

[64] M S de la Lama, J M Lopez, J J Ramasco, M A Rodriguez, Activity statistics of a forced elastic string in a disordered medium, J. Stat. Mech., P07009 (2009).
http://dx.doi.org/10.1088/1742-5468/2009/07/P07009

[65] M Abramowitz, I A Stegun, Handbook of mathematical functions: With formulas, graphs, and mathematical tables, Pag. 884, Dover, New Tork (1965).

[66] M San Miguel, R Toral, Stochastic effects in physical systems, In: Instabilities and nonequilibrium structures VI, Eds. E Tirapegui, J Martinez-Mardones, R Tiemann, Pag. 35, Kluwer Academic Publishers (2000).

[67] D Forster, D R Nelson, M J Stephen, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16, 732 (1977).
http://dx.doi.org/10.1103/PhysRevA.16.732

[68] E Medina, T Hwa, M Kardar, Y-C Zhang, Burgers equation with correlated noise: Renormalization-group analysis and applications to directed polymers and interface growth, Phys. Rev. A 39, 3053 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.3053

[69] L Canet, H Chate, B Delamotte, General framework of the non-perturbative renormalization group for non-equilibrium steady states, J. Phys. A 44, 495001 (2011);
http://dx.doi.org/10.1088/1751-8113/44/49/495001
L Canet, H Chate, B Delamotte, N Wschebor, Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: General framework and first applications, Phys. Rev. E 84, 061128 (2011);
http://dx.doi.org/10.1103/PhysRevE.84.061128
Th Kloss, L Canet, N Wschebor, Nonperturbative renormalization group for the stationary Kardar-Parisi-Zhang equation: Scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions, Phys. Rev. E 86, 051124 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.051124

[70] H S Wio, R R Deza, J A Revelli, C Escudero, A novel approach to the KPZ dynamics, Acta Phys. Pol. B 44 889 (2013).
http://dx.doi.org/10.5506/APhysPolB.44.889

[71] H C Fogedby, W Ren, Minimum action method for the Kardar-Parisi-Zhang equation, Phys. Rev. E 80, 041116 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041116

[72] F Langouche, D Roekaerts, E Tirapegui, Functional integration and semiclassical expansions, D. Reidel Pub. Co., Dordrecht (1982).
http://dx.doi.org/10.1007/978-94-017-1634-5

[73] H S Wio, Path integrals for stochastic processes: An introduction, World Scientific, Singapore (2013).
http://dx.doi.org/10.1142/8695