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Expansions for eigenfunction and eigenvalues of large-n Toeplitz matrices

Leo P. Kadano�
1, 2∗

This paper constructs methods for �nding convergent expansions for eigenvectors and
eigenvalues of large-n Toeplitz matrices based on a situation in which the analogous in�nite-
n matrix would be singular. It builds upon work done by Dai, Geary, and Kadano� [H
Dai et al., J. Stat. Mech. P05012 (2009)] on exact eigenfunctions for Toeplitz operators
which are in�nite-dimension Toeplitz matrices. One expansion for the �nite-n case is
derived from the operator eigenvalue equations obtained by continuing the �nite-n Toeplitz
matrix to plus in�nity. A second expansion is obtained by continuing the �nite-n matrix
to minus in�nity. The two expansions work together to give an apparently convergent
expansion for the �nite-n eigenvalues and eigenvectors, based upon a solvability condition
for determining eigenvalues. The expansions involve an expansion parameter expressed as
an inverse power of n. A variational principle is developed, which gives an approximate
expression for determining eigenvalues. The lowest order asymptotics for eigenvalues and
eigenvectors agree with the earlier work [H Dai et al., J. Stat. Mech. P05012 (2009)]. The
eigenvalues have a (lnn)/n term as their leading �nite-n correction in the central region
of the spectrum. The 1/n correction in this region is obtained here for the �rst time.

I. Introduction

i. History

This paper is a continuation of recent work by Dai,
Geary, and Kadano� [1] (which we shall hereafter
cite as paper I) and Lee, Dai and Bettleheim [2] on
the spectrum of eigenvalues and eigenfunctions for
singular Toeplitz matrices. A Toeplitz matrix is one
in which the matrix elements, Tj,k, are functions of
the di�erence between indices. We de�ne all matrix
elements in terms of a single function: the symbol,
a(z), where z = e−ip is on the unit circle. Thus we
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write

Tj,k = Tj−k =

∮
dz

2πiz

a(z)

zj−k
(1)

The Toeplitz matrix is then de�ned by having the
indices j and k live in the interval [0, n− 1]. (Note
that I use the subscript notation to describe behav-
ior in coordinate space, and argument notation to
describe behavior in Fourier space.)

The basic problem under consideration here is
the de�nition of a good method for calculating the
eigenvalues and eigenfunctions of Toeplitz matri-
ces for large values of n. Previous work [3, 4] has
described the Toepltiz matrix problem by pointing
out that the eigenvalues approach the spectrum of
the analogous problem in which the indices vary
over the set [−∞,∞]. This latter problem may be
solved by Fourier transformation and has an eigen-
function Ψj = e−ipj and a corresponding eigenvalue
a(e−ip). The set of all such eigenvalues, for real p,
is termed image of the symbol. Widom speculates
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[3, 4] that in the large-n limit, the discrete spec-
trum of the �nite-n problem approaches that im-
age, at least for the case in which the symbol has a
singularity on the unit circle.
Previous work [2, 1] has established how this ap-

proach occurs for the speci�c case in which the sym-
bol has the form of singularity introduced by Fisher
and Hartwig [9, 10], speci�cally

a(z) = (2− z − 1/z)α(−z)β (2)

Note that this singularity is de�ned by two param-
eters, α, which de�nes a zero in the symbol and,
β, which de�nes a discontinuity. For this symbol,
Lee, Dai, and Bettleheim [2] found the spectrum for
large n and α = 0, while Dai, Geary and Kadano�
described a part of the spectrum for real parame-
ters, α and β, obeying 0 < α < |β| < 1 in paper
I. The spectrum of the Toeplitz matrix is invariant
under a re�ection, β → −β, in the sign of β.
Paper I considered the behavior of Toeplitz op-

erators [7, 8] constructed from the symbol of Fisher
and Hartwig. These are Toeplitz matrices in which
the indices run through the interval [0,∞]. The
analysis was carried on for situations in which
0 < α < 1 so that the image of the symbol forms
a closed curve. The �nite-n eigenvalues sit within
that curve and approach it as n goes to in�nity.
Two cases should be di�erentiated:
Case I. 0 > β > −1. All points within the image

of the symbol are right eigenvalues of the Toeplitz
operator [1].
Case II. 0 < β < 1. The Toeplitz operator has

no right eigenvalues [1].
(There is one more very interesting special case:

α = 0. In this situation, if −1 < β < 1, the image
of the symbol is a curved line segment, and the
eigenvalue spectrum consists of all points which can
be reached by connecting two points of that curve.
Once again, the eigenvalues for �nite-n approach
the curve while sitting within the region de�ned by
the in�nite-n eigenvalues [2]. We do not consider
this α = 0 case in this paper.)
The distinction between cases I and II above de-

scribes whether or not the Toeplitz operator has
or has not right eigenvectors. The transposition
operation,

Tj,k = Tj−k → Tk,j = Tk−j (3)

is just the parity operation on j − k, and can be
represented by �ipping the sign of β in the symbol.

Thus if T is in the category of case I, its transpose
is in case II � and vice versa.
This distinction carries over in a subtle manner

to the Toeplitz matrices. In case I, the right eigen-
vectors, Ψj for the Toeplitz matrices decay expo-
nentially as j increases. The corresponding left
eigenvectors for the operator with the same (nega-
tive) value of β grow exponentially with increasing
j. This growth can be seen from an additional sym-
metry of the Fisher-Hartwig Toeplitz matrix un-
der the re�ection operation that changes the index
value, j, into n− 1− j.

Tj,k = Tj−k → T(n−1−j)−(n−1−k) = Tk−j (4)

and has the same e�ect as the transposition opera-
tion. The re�ection interchange �ips the sign of β
and also makes the decay of the right eigenvector
with j into a growth with j. Thus, the case I-case
II distinction is interchanged for both Toeplitz op-
erator and Toeplitz matrix under the transposition
symmetry, and is equally interchanged for the ma-
trix under the re�ection operation.

ii. The previous calculational strategy

In the previous paper, paper I, we studied the
Toeplitz eigenvalue equation for case I

n−1∑
k=0

Tj−kψk = εψj for 0 ≤ j ≤ n− 1 (5a)

by studying the related Toeplitz operator equation

∞∑
k=0

Tj−kΨk = εΨj for 0 ≤ j ≤ ∞ (5b)

for an eigenvalue for which both equations equally
had solutions. We could only solve the �rst
equation numerically. We had an exact method,
the Wiener-Hopf technique, for solving the second
equation. The crucial result was that, for case I
situations and for large n, the solution of the sec-
ond equation provided an excellent approximation
for the eigenfunction of the �rst one, at least in the
situation in which one is given the correct eigen-
value. What happened was that the extension of
the equation being solved into the region between
j = n and j = ∞ hardly changed the solution of
Eq. (5a), at least for j not too close to n.
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The next step will be to study an equation aris-
ing from extending Eq. (5a) toward minus in�nity,
speci�cally

n−1∑
k=−∞

Tj−kΩk = εΩj + Γj for −∞ ≤ j ≤ n− 1

(5c)
Notice the forcing term, Γ, on the right hand side of
this equation. In the same case I, situation in which
Eq. (5b) has eigenvalue solutions, Eq. (5c) has
none so that the forcing term produces a unique, �-
nite result. Very similar methods to the ones which
solve Eq. (5b) will also solve Eq. (5c).

iii. Plan of paper

Roughly speaking, the plan of this paper is to pro-
duce and combine two di�erent expansions for the
Toeplitz matrix equation. First, one will get an ap-
proximate solution to Eq. (5b), albeit with some
small terms left over. Next, the methods used to
solve Eq. (5c) will be used to calculate these left-
over terms while treating the terms previously de-
termined as forcings. We shall thereby close the
equations for the Toeplitz matrix eigenvector.

The previous work, paper I, had a rather heuris-
tic method for estimating the size of the corrections
to the eigenvalue and eigenfunction estimates. Here
we have an exact, testable expansion. However,
the expansion does start from the premise that the
�nite-n spectrum of eigenvalues does approach the
in�nite-n spectrum, a premise that is true for a
wide class of Toeplitz matrices with singular sym-
bols [5, 6].

The next chapter includes the two analyses re-
spectively based upon the two Toeplitz operator
equations obtained by extending our matrix in the
two possible directions. The third chapter puts
the two analyses together to get equations which
will yield an asymptotic expansion for eigenvalues
and eigenfunctions. The �nal chapter describes
Toeplitz problems left unresolved by this paper.

II. A pair of expansions

i. De�nitions

In all three cases de�ned by Eqs. (5), our analy-
sis will be generated by extending the range of the

index variables to (−∞,∞), which will then per-
mit us to use Fourier transform techniques. The
equation for the Toeplitz matrix's eigenvector can
be cast in terms of three di�erent kinds of functions
which are respectively indicated by superscripts −,
0, and +. The �rst superscript indicates a function
which is non-zero only for j < 0; the superscript 0
de�nes a function non-zero for 0 ≤ j ≤ n−1; while
the third superscript describes a function non-zero
in [n,∞). The eigenfunction we wish to calculate
is ψ0

j and it obeys

∞∑
k=−∞

Kj,kψ
0
k = φ−j + φ+j , (6)

which holds for all integer values of j. Here, the
matrix K is

Kj,k = Tj−k − εδj,k (7)

Eq. (6) will be analyzed in Fourier transform
language, with z being the Fourier variable, as
in Eq. (1). Thus, the four quantities de�ned in
that equation will be written as K(z) = a(z) −
ε, φ−(z), ψ0(z), and φ+(z), which will respectively
contain powers of z extending from −∞ to∞; only
negative powers of z; non-negative powers extend-
ing up to zn−1; and powers from zn to z∞. We
also need to de�ne a notation for the decomposi-
tion of the K operator. We write, for case I, the
Wiener-Hopf factorization

K(z) = K>(z)/(zK<(z)) (8)

where K> has all its singularities and zeros out-
side the unit circle and K< has all its singularities
and zeros inside the unit circle. The reader should
recall, from paper I, if and only if ε is inside the
curve described by a(z). (For case II, the z would
appear in the numerator rather than the denom-
inator.) The functions K>(z) and 1/K>(z) have
neither zero nor singularity inside the unit circle
so that they can be expanded in a power series in
z. Similarly, K>(z) and 1/K>(z) are regular out-
side the unit circle so that they can be expanded in
1/z. As a result , the Fourier transforms of these
functions obey

K>
j−l = 0 for j < l

while
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K<
j−l = 0 for l < j.

One can equally well de�ne the functions (1/K>)
and (1/K<) in coordinate space by Fourier trans-
formation, as for example,

(1/K>)j =

∮
dz

2πiz
z−j/K>(z)

Acting to the right, K>, (1/K>) and z all carry
information toward larger j values, while K<,
(1/K<) and 1/z carry information toward lower j
values.

ii. Wiener-Hopf analysis for Toeplitz oper-

ator

This section is not at all new. It is all contained
in paper I and in earlier work [7, 8]. However, the
notation is slightly di�erent here. We set n = ∞
and note that φ+ must be zero. To distinguish the
solution for the Toeplitz operator from the one for
the Toeplitz matrix, we write Ψ for the operator
eigenfunction and Φ− for the auxiliary function φ−.
We then note that Eqs. (5b), (7) and (8) imply

K>Ψ = zK<Φ− (9)

Note that Ψ contains only non-negative powers of
z, while Φ− contains only negative powers.
Eq. (9) is constructed to enable us to follow the

usual Wiener-Hopf strategy [11]. The only possible
common behavior of the two sides of Eq. (9) is that
both sides may contain a constant term, indepen-
dent of z. Then Eq. (9) has the solution

K>Ψ = C (10a)

zK<Φ− = C (10b)

with C being simply an arbitrary constant in this
Fourier transform language. (In coordinate space,
C becomes Cδ(j, 0)). The solution can then be
written in terms of two functions:

Ψj = C(1/K>)j (11a)

which vanishes for j < 0, while the other function
is

Φ−j = C(1/K<)j+1

with (1/K<)j =

∮
dz

2πiz
z−j/K<(z). (11b)

This integral vanishes for j > 0. Note that the
arbitrary parameter, C, is a normalization constant
for the eigenfunction and its auxiliary function, Φ−.
The analysis in paper I enables us to describe the

asymptotic structure of these functions for values of
|j| much bigger than one in the previously analyzed
case 0 < α < −β < 1. Recall from paper I that
ε = a(zc), that zc = e−ipc is outside the unit circle,
and therefore ε is inside the curve formed by a(z),
with z on the unit circle. The Fourier transforms of
both functions contain a weak singularity at z = 1
proportional to (1−z)2α. This zero, then, produces
a real term which decays as 1/j1+2α for large values
of |j|. The function, K>(z), has, in addition to the
weak zero, a simple zero at z = zc, just outside the
unit circle. This zero describes the eigenvalue of
the Toeplitz matrix. The zeros give an asymptotic
form for large j containing two terms

(1/K>)j → A>(e−ipc)j−1−2α +B(e−ipc)eipcj ,
(12a)

The notation, A>(e−ipc) and B(e−ipc), indicates
that these coe�cients depend upon the eigenvalue.
For (1/K<) and thus for the auxiliary function,
Φ<j , this singularity de�nes the behavior for large
values of −j as

(1/K<)→ A<(e−ipc)(−j)−1−2α (12b)

Thus, Ψj and Φ−j both decay algebraically for
large values of j.
Paper I suggested that the two terms on the

right-hand-side of Eq. (12a) were both of order
n−1−2α when j is of order n. This result gives us a
small parameter

λ ∼ n−1−2α ∼ |eipcn| (13)

which might be used in expansions.

iii. Approximate eigenvector for Toeplitz

matrix

Equation 6 can be analyzed using the same kinds
of splitting of K employed in Sec. ii. We take that
equation in its Fourier transformed representation,
namely,

K(z)ψ0(z) = φ+(z) + φ−(z) (14)

and multiply by zK< as in Eq. (9). One then �nds

K>ψ0 = zK<φ− + zK<φ+ (15)

020003-4



Papers in Physics, vol. 2, art. 020003 (2010) / L. P. Kadano�

The second term on the right hand side of this equa-
tion can be split up into parts which contain expo-
nents of z which are respectively negative, between
zero and n − 1 inclusive, and above n − 1 in the
form

zK<φ+ = (zK<φ+)− + (zK<φ+)0 + (zK<φ+)+

Then this equation can be rearranged into a form
in which terms in non-positive powers of z appear
on one side and non-negative powers on the other.
i.e.

K>ψ0 − (zK<φ+)0 − (zK<φ+)+

= zK<φ− + (zK<φ+)− = c (16)

The second equal sign in this equation sets both
sides equal to a constant, c, as in Eq. (10). The
leading terms in both the wave function and the
auxiliary function, φ−, are set by c since Eq. (16)
implies a leading order behavior

K>
0 ψ

0 = K<
0 φ
−
−1 = c (17)

for j's not too far from zero. Later on, we shall use
an analogous result from an analysis of forcings in
Eq. (14) to obtain a solvability equation for deter-
mining the eigenvalues. Notice that we have used
the symbol c to describe the normalization constant
in this situation, while we used C for the same pur-
pose in the Toeplitz-matrix eigenvector. These two
quantities are analogous, but need not be the same.
We solve for ψ0, �nding

ψ0 = (1/K>)c+ (1/K>)(zK<φ+)0

+(1/K>)(zK<φ+)+.

Since (1/K>), acting to the right pushes coordinate
indices toward higher values, we can project onto
the subspace 0 �note that the projection of the
�nal term is zero� and thus �nd

ψ0 = [(1/K>)c]0 + [(1/K>)(zK<φ+)0]0 (18a)

The equation for the negative j domain in Eq. (16)
may be solved for φ− to give

φ− = (zK<)−1c− (zK<)−1(zK<φ+)− (18b)

As in the analysis in Subsection ii. the auxiliary
function φ− does not directly enter the analysis of

the eigenfunction, which is there denoted as Ψ, and
is here called ψ0. However, there are important dif-
ferences between the result here and the one in Sub-
section ii.: In contrast to the case of the Toeplitz
operator, the solution for the eigenfunction requires
a knowledge of a subsidiary function, here φ+. This
function provides the forcing term which renders
our lowest order solution inexact. Further, for the
Toeplitz operator, only the function K> is needed
to determine the eigenfunction. Here, bothK> and
K< are involved.

Note the 1/z to the right of the equal sign in
Eq. (18b). This factor has the e�ect of making the
leading term in the expansion of φ− be 1/z, which
is then followed by higher powers of 1/z. This is
precisely the right structure for the expansion of
φ−.

Eq. (18) gives us expressions for two of the quan-
tities we need to know. However, we are far from
done. These equations give us relatively simple ex-
pressions for ψ0 and φ−, but we do not yet have
an equivalently simple expression for φ+. In both
of the two subequations in Eq. (18), we can eval-
uate the �rst term directly, while the second term
could be evaluated by quadratures if we but knew
φ+. Note that the �rst terms on the right in both
of these subequations are precisely the same as in
the solution for the Toeplitz operator eigenvector.

Our previous results [1] show that for small and
intermediate values of j in the set [0, n−1], the �rst
term in Eq. (18a) varies over a wide range, being
of order c for small values of j and of order cλ ∼
c/n2α+1 for j of order n. Similarly the �rst term
in Eq. (18b) varies from being of order c for −j of
order unity to being of order cλ for −j of order n. It
will turn out that the second term in each of these
equations is a correction of order cλ and therefore
smaller by a factor of λ than the maximum value
of the �rst term.

iv. Forcing analysis for Toeplitz matrix

It appears that we have usable lowest order re-
sults for two of the three unknown functions. The
third unknown, φ+, contributes correction terms
but it is hard to see a direct way to get it from Eq.
(16). However, we can use the forcing form of the
Toeplitz matrix to obtain additional information.
To do this, rewrite Eq. (15) while interchanging
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the role of K> and K< and �nd

(1/K<)ψ0 = (z/K>)φ− + (z/K>)φ+ (19)

We may then split up the term (z/K<)φ− into the
di�erent regions (−, 0, and +) to derive a result
analogous to Eq. (16), namely

(1/K<) ψ0 − [(z/K>)φ−]0 − [(z/K>)φ−]−

= (z/K>)φ+ + [(z/K>)φ−]+ = 0 (20)

There is, however, a substantial di�erence between
Eq. (16) and Eq. (20). Look at the region to the
right of the �rst equal sign in both equations. The
former has a zφ− in it, while the latter has a zφ+.
The former has a component which extends beyond
the region − into the region 0, while the latter has
no term projecting our of the region +. Thus, we
put a constant, c, on the right hand side of Eq. (16)
to cancel the extending term, but put a zero on the
right of Eq. (20), since there is no such term. This
zero is, at bottom, a re�ection of the fact that the
transposed Wiener-Hopf operator equation has no
eigenvalue solutions.
Now look at the terms between the two equal

signs in Eq. (20). The lowest power of z in the �rst
such term is zn+1. The next term contains as its
smallest power of z, a term in zn. There is nothing
to balance this term. It must vanish. It follows
that

[(z/K>)φ−]n = 0 (21)

This statement will turn out to be the integrability
condition that will �x the eigenvalue in our analy-
sis.
We now use Eq. (20) to write the analogs of Eq.

(18a) and Eq. (18b), which are

ψ0 = [K<((z/K>)φ−)0]0 (22a)

and

φ+ = −(K>/z)[(z/K>)φ−]+ (22b)

Eq. (22a) is another expression for the eigenfunc-
tion, analogous to Eq. (18a). We hope that the
two equations are equivalent. Eq. (22b) gives us
a usable expression for φ+, which can then be em-
ployed to give explicit values to the correction terms
in Eq. (18a) and Eq. (18b). Note that Eq. (22a)

and Eq. (22b) are simpler than their analogs, de-
rived earlier, because they do not have terms in
c. These four equations will give us the results we
need for the various eigenfunctions. They are exact;
there are no approximations made in their deriva-
tion. The integrability condition, Eq. (21), is also
exact.

III. Results

i. Estimation of eigenvalues

The eigenvalue of the Toeplitz matrix can be esti-
mated with the help of Eq. (21). When written
out, this equation reads

∞∑
j=1

(1/K>)n+j−1 φ
−
−j = 0 (23)

To obtain a lowest order version of this equation,
one replaces φ− by its lowest order approximant,
as given by the �rst term on the right hand side of
Eq. (18b). We thereby obtain

∞∑
j=1

(1/K>)n+j−1K
<
1−j = 0 (24)

as our lowest order eigenvalue condition.
In the situation in which n is large, one can use

the asymptotic form of (1/K>) as given by Eq.
(12a) to replace the �rst factor under the summa-
tion in Eq. (24) so that the eigenvalue condition
becomes

∞∑
j=1

[
A>(e−ipc)(n+ j − 1)−1−2α

+B(e−ipc)eipc(j−1)eipcn
]
K<

1−j = 0.

The main contribution to this equation converges
rapidly with j, so for large n we neglect j in compar-
ison to n and �nd an expression for the momentum-
value, pc:

eipcn = −n−1−2α
[
A>(e−ipc)

∑∞
j=1K

<
1−j
][

B(e−ipc)
∑∞
k=1 e

ipc(k−1)K<
1−k
]

This equation is then solved to get an asymptotic
expansion for the m−th value of the momentum
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p(m)
c = 2π(−1 +m/n)− (1 + 2α)i(lnn)/n

+ (δp)i/n+ o(1/n),

with (δp) = ln{[−A>(zc)K
<(1)]/[B(zc)K

<(zc)]},
and zc = e−ipc (25)

Here, m is a label for the di�erent eigenvalues,
which takes on values between zero and n − 1. In
Eq. (25), A> and B are non-singular functions
of m/n, except for extra corrections which appear
when m is close to its endpoints. Thus, δp gives
smaller, slowing varying corrections to the earlier
terms on the right of Eq. (25). The estimates re-
�ected in Eq. (25) were all predicted in paper I,
except for the precise value of δp, which appears
here for the �rst time.

ii. Equations for eigenfunctions

We argue about the relative sizes of the various
terms in the equations by saying that 1/K> and
1/K< serve as propagators which connect the re-
gions described by the symbols −, 0, and +. Any
connection between − and + is necessarily small, as
is any connection of cδj,0 to +. I assert that these
connections are of order λ ∼ 1/n1+2α. This small-
ness makes terms involving several regions neces-
sarily small and makes it possible for our expan-
sions for the eigenfunction and auxiliaries, given
below, to be rapidly convergent.
To obtain such expansions, one starts with the

unknown that determines φ−, as seen in Eq. (18b),
i.e.

X− = (zK<φ+)− (26)

According to the arguments we have given so far,
this term should be at maximum of order cλ2. Then
rewrite Eq. (22b) for φ+ in terms of this small
unknown quantity as

φ+ = −(K>/z)
[
[1/(K>K<)] [c−X−]

]+
(27)

We can next rewrite this equation as in integral
equation for the unknown as

X− = −
(

(K>K<)
[
(K>K<)−1 (c−X−)

]+)−
(28)

Since X− is of order λ2 relative to c, Eq. (28) can
be solved iteratively by expanding the right hand
side in a power series in X−.

Once X− is determined, Eq. (18b) will give the
value of φ− and Eq. (27) will determine φ+. Using
the value of φ+ one can then determine the eigen-
function via Eq. (18a).

iii. An unconventional eigenvalue condition

It appears that we have a convergent expansion for
our eigenfunction. However, there is a potential
di�culty. The expansions cannot always converge.
Indeed, the equations for the various functions de-
termine an eigenvalue, and cannot possibly con-
verge unless the eigenvalue condition is met. The
reader might not be sure that the integrability con-
dition of Eq. (21) is the correct eigenvalue condi-
tion.
One conventional way of �nding eigenvalues is

through the use of an extremal principle. Such a
principle always exists for a Hermetian matrix. The
matrix, T , is not Hermetian, but, as a Toeplitz ma-
trix, it has a built-in re�ection symmetry which can
be used in a roughly similar manner. Let χj be a
vector with indices, j's, in the interval [0, n − 1].
Then, the re�ection of this eigenvector is

χ̃j = χn−1−j (29)

As discussed in paper I, if χ is an eigenvector of the
this Toeplitz matrix, T , then the re�ected vector is
automatically an eigenvector of the transpose of T .
In symbols

n−1∑
k=0

Kj−kχk = 0 implies

n−1∑
k=0

χn−1−kKk−j̃ = 0

(30)
where j̃ = n−1−j. Thus, if the left-hand statement
is true for all j in [0, n − 1], then the right-hand
statement is equally true.
Now we de�ne an analog of an extremal principle

for the Toeplitz matrix. Consider the quantity:

Q[χ] = N/D with (31)

D =

n−1∑
l=0

χ̃l χl = χ̃ · χ

N =

n−1∑
j,k=0

χ̃j
[
Tj−k − εδj,k

]
χk = [χ̃ ·K · χ]

This quantity, Q, reduces to zero when ε is an eigen-
value of the n-th order Toeplitz matrix and χ is
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the corresponding eigenfunction. If χ deviates from
this eigenfunction by a small amount, then Q is of
order of the square of the deviation. If we choose a
variational function that is an eigenfunction, but
one with the �wrong� eigenvalue, the variational
function will have the value of the di�erence be-
tween ε and that eigenvalue. Since the eigenvalues
vary by an amount of order unity, we might expect
that a completeness argument might imply that for
an arbitrarily chosen smoothly varying χ, Q would
be of order unity.

Of course, if ε is not an eigenvalue of the Toeplitz
matrix, this extremal property is lost. Unfortu-
nately, the extremal property is not a minimum
or a maximum property. Hence, it might be that
an incorrect variational function would nonetheless
give the variational function a value zero.

IfQ is far from zero, χ deviates considerably from
the eigenvector. However, the converse is not true:
Q might be zero, while χ is nonetheless far from be-
ing an eigenvector. However, we shall use a small
size of Q as some indication of a good approxima-
tion to an eigenvector.

Now look at the special case in which χ is our
lowest order approximation for the eigenfunction
as given by the �rst term in Eq. (18a),

χj = Ψj = (1/K>)(j) for 0 ≤ j ≤ n− 1 (32)

(For simplicity, we have chosen C = 1.) With this
choice the denominator has the value

D =

n−1∑
l=0

(1/K>)(l) (1/K>)(n− 1− l) (33a)

The �rst step in simplifying the numerator is to
replace the sum over k = [0, n − 1] by a sum over
k = [0,∞] minus a sum over k = [n,∞]. The sum
over [0,∞] vanishes so that

N = −
n−1∑
j=0

∞∑
k=n

Ψn−1−j Ψk Kj−k

The j-sum is split into pieces. We sum over j =
[0,∞] and subtract the piece j = [n,∞]. Eq. (9)
then gives a result in which N comes out as the sum
of two terms, N = N++ +N+− which respectively
have the values

N++ =

∞∑
j,k=0

Ψj+n Ψk+n K−j−k−1−n

=

∞∑
j,k=0

(1/K>)j+n (1/K>)k+n K−j−k−1−n

(33b)

and

N+− = −
∞∑
k=0

Ψk+n Φ−k−1

= −
∞∑
k=0

(1/K>)k+n (1/K<)−k−1 (33c)

The results of paper I enable us to estimate the
order of magnitude of the various terms in Eq.
(33). The denominator Eq. (33a) has the mag-
nitude D = O(nλ), unless it is made smaller by
a cancellation in the sum. The numerator term
N++ has the order of magnitude N++ = O(nλ3)
since each K in the product is of order nλ and
the sum converges by falling o� algebraically. The
numerator term N+− has the order of magnitude
N+− = O(λ) since (K<) falls o� quite rapidly from
its values, of order 1, for small values of k. In fact,
we already calculated precisely this term when we
gave our lowest order equation for the eigenvalue
in Eq. (24) derived from it our lowest order esti-
mate estimate for pc in Eq. (25). Thus, our lowest
order estimate was a demand that N+− vanish. If
we use the condition N++ + N+− = 0 to obtain
another estimate of pc, that estimate may be ex-
pected to be of higher order in λ than the previous
one. Thus, we gain additional con�dence that our
previous analysis is correct.
In principle, we could carry out our expansions

of the eigenfunction and auxiliary functions to any
derived order and thereby make our presumed ex-
act condition of Eq. (21) true to any order. Our
result for the eigenvalue is �exact�, but it is not rig-
orous since we have not proved that our approach
converges.

IV. Looking forward

We have now completed our task of constructing
an analytic (albeit heuristic) structure for an eigen-
function expansion. The work is plausible but not
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proven. The next step might be to construct proofs
of the convergence and exactness of these results, or
alternatively, to back them up with good numerical
work.
The work, in fact, lacks two checks which one

might hope to put into place using purely ana-
lytic means. I have not checked that the analytics
yields the Fisher and Hartwig [9, 10] results for the
product of eigenvalues. In fact, I cannot see from
where they might arise. I also have not checked
that somewhat di�erent approaches of Subsection
iii. and Subsection iv. give exactly the same expres-
sion for the eigenvector.
In addition, I don't know how the eigenvectors

and eigenvalues at the ends of the spectrum be-
have. As shown by numerical evidence, they behave
di�erently from the ones at the middle of the spec-
trum, but the di�erence has been left unexplored
up to now. The di�erence arises because there are
two di�erent zeros in K(z) that are well separated
in the middle of the spectrum, but come together
at the ends. But those words do not tell us the
answer without further work.
Of course, there is much room for analysis of fur-

ther regions of the parameters α and β.
It is, in some respects, very pleasing to see that

there is yet room for good additional work on this
problem.
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