[1] S J Antony, W Hoyle, Y Ding, Granular materials: Fundamentals and applications, The Royal Society of Chemistry, Cambridge (2004).

[2] J Duran, Sands, powders and grains, Springer, Berlin (1997).

[3] T Halsey, A Mehta, Challenges in granular physics, World Scientific Publishing, New Jersey (2002).

[4] A Yu, K Dong, R Yang, S Luding, Powders and grains 2013: Proceedings of the 7th international conference on micromechanics of granular media, AIP Series. Vol. 1542, Sydney, Australia (2013).

[5] GdR MiDi, Eur. Phys. J. E 14, 341 (2004).
http://dx.doi.org/10.1140/epje/i2003-10153-0

[6] H M Jaeger, S R Nagel, Granular solids, liquids, and gases, Rev. Mod. Phys. 68, 1259 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.1259

[7] P Cixous, E Kolb, N Gaudouen, J-C Charme, Jamming and unjamming by penetration of a cylindrical intruder inside a 2 dimensional dense and disordered granular medium, In: Powders and grains 2009, Proceedings of the 6th international conference on micromechanics of granular media 1145, 539 (2009).

[8] A P F Atman, P Claudin, G Combe, R Mari, Mechanical response of an inclined frictional granular layer approaching unjamming, Europhys. Lett. 101, 44006 (2013).
http://dx.doi.org/10.1209/0295-5075/101/44006

[9] A J Liu, S R Nagel, Jamming is not just cool any more, Nature 396, 21 (1998).
http://dx.doi.org/10.1038/23819

[10] T S Majmudar, M Sperl, S Luding, R P Behringer, Jamming transition in granular systems, Phys. Rev. Lett. 98, 058001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.058001

[11] C Mankoc, A Janda, R Arevalo, J M Pastor, I Zuriguel, A Garcimartin and D Maza. The flow rate of granular materials through an orifice, Granul. Matter 9, 407 (2007).
http://dx.doi.org/10.1007/s10035-007-0062-2

[12] A P F Atman, P Claudin, G Combe, G H B Martins, Mechanical properties of inclined frictional granular layers, Granul. Matter 16, 1 (2014).
http://dx.doi.org/10.1007/s10035-014-0482-8

[13] G Katgert, M van Hecke, Jamming and geometry of two-dimensional foams, Europhys. Lett. 92, 34002 (2010).
http://dx.doi.org/10.1209/0295-5075/92/34002

[14] N D Denkov, S Tcholakova, K Golemanov, A Lips, Jamming in sheared foams and emulsions, explained by critical instability of the films between neighboring bubbles and drops, Phys. Rev. Lett. 103, 118302 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.118302

[15] A Kumar, J Wu, Structural and dynamic properties of colloids near jamming transition, Colloid. Surf. A 247, 145151 (2004).
http://dx.doi.org/10.1016/j.colsurfa.2004.07.031

[16] A Fluerasu, A Moussaid, A Madsen, A Schofield, Slow dynamics and aging in colloidal gels studied by x-ray photon correlation spectroscopy, Phys. Rev. E 76, 010401 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.010401

[17] B Duplantier, T C Halsey, V Rivasseau, Glasses and grains: Poincare Seminar 2009, Springer, Basel (2011).
http://dx.doi.org/10.1007/978-3-0348-0084-6

[18] C S O'Hern, S A Langer, A J Liu, S R Nagel, Random packings of frictionless particles, Phys. Rev. Lett. 88, 075507 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.075507

[19] C O'Hern, L E Silbert, A J Liu, S R Nagel, Jamming at zero temperature and zero applied stress: The epitome of disorder, Phys. Rev. E 68, 011306 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.011306

[20] S S Manna, D V Khakhar, Internal avalanches in a granular medium, Phys. Rev. E 58, R6935 (1998).
http://dx.doi.org/10.1103/PhysRevE.58.R6935

[21] I Zuriguel, A Garcimartin, D Maza, L A Pugnaloni, J M Pastor, Jamming during the discharge of granular matter from a silo, Phys. Rev. E 71, 051303 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.051303

[22] K To, P-Y Lai, H K Pak, Jamming of granular flow in a two-dimensional hopper, Phys. Rev. Lett. 86, 71 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.71

[23] A Garcimartin, I Zuriguel, L A Pugnaloni, A Janda, Shape of jamming arches in two-dimensional deposits of granular materials, Phys. Rev. E 82, 031306 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.031306

[24] A Drescher, A J Waters, C A Rhoades, Arching in hoppers .2. Arching theories and critical outlet size, Powder Technol. 84, 177 (1995).
http://dx.doi.org/10.1016/0032-5910(95)02982-8

[25] C F M Magalhaes, A P F Atman, J G Moreira, Segregation in arch formation, Eur. J. Phys. E 35, 38 (2012).
http://dx.doi.org/10.1140/epje/i2012-12038-5

[26] A Janda, I Zuriguel, A Garcimartin, L A Pugnaloni, D Maza, Jamming and critical outlet size in the discharge of a two-dimensional silo, Europhys. Lett. 84, 44002 (2008).
http://dx.doi.org/10.1209/0295-5075/84/44002

[27] C F M Magalhaes, J G Moreira, A P F Atman, Catastrophic regime in the discharge of a granular pile, Phys. Rev. E 82, 051303 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.051303

[28] B Chevalier, G Combe, P Villard, Experimental and discrete element modeling studies of the trapdoor problem: Influence of the macro-mechanical frictional parameters, Acta Geotech. 7, 15 (2012).
http://dx.doi.org/10.1007/s11440-011-0152-5

[29] J Ai, J-F Chen, J M Rotter, J Y Ooi, Assessment of rolling resistance models in discrete element simulations, Powder Technol. 206, 269 (2011).
http://dx.doi.org/10.1016/j.powtec.2010.09.030

[30] M J Jiang, H-S Yu, D Harris, A novel discrete model for granular material incorporating rolling resistance, Comput. Geotech. 32, 340357 (2005).
http://dx.doi.org/10.1016/j.compgeo.2005.05.001

[31] Y C Zhou, B D Wright, R Y Yang, B H Xu, A B Yu, Rolling friction in the dynamic simulation of sandpile formation, Physica A 269, 536 (1999).
http://dx.doi.org/10.1016/S0378-4371(99)00183-1

[32] K Iwashita, M Oda, Rolling resistance at contacts in simulation of shear band development by DEM, J. Eng. Mech. 124, 285292 (1998).
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)

[33] X Li, X Chu, Y T Feng, A discrete particle model and numerical modeling of the failure modes of granular materials, Eng. Computation. 22, 894 (2005).
http://dx.doi.org/10.1108/02644400510626479

[34] N Estrada, E Azema, F Radjai, A Taboada, Identification of rolling resistance as a shape parameter in sheared granular media, Phys. Rev. E 84, 011306 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.011306

[35] E-M Charalampidou, G Combe, G Viggiani, J Lanier, Mechanical behavior of mixtures of circular and rectangular 2D particles, In: Powders and grains 2009: Proceedings of the 6th international conference on micromechanics of granular media, AIP Conf. Proc., Vol. 1145, Pag. 821, (2009).

[36] D C Rapaport, The art of molecular dynamics simulation, Cambridge University Press, Cambridge (2004).
http://dx.doi.org/10.1017/CBO9780511816581

[37] W C Swope, H C Andersen, P H Berens, K R Wilson, Computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, J. Chem. Phys. 76, 637 (1982).
http://dx.doi.org/10.1063/1.442716

[38] C Goldenberg, A P F Atman, P Claudin, G Combe, I Goldhirsch, Scale separation in granular packings: Stress plateaus and fluctuations, Phys. Rev. Lett. 96, 168001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.168001

[39] S F Pinto, A P F Atman, M S Couto, S G Alves, A T Bernardes, H F V Resende, E C Souza, Granular fingers on jammed systems: New fluidlike patterns arising in grain-grain invasion experiments, Phys. Rev. Lett. 99, 068001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.068001

[40] A P F Atman, P Claudin, G Combe, Departure from elasticity in granular layers: Investigation of a crossover overload force, Comput. Phys. Commun. 180, 612 (2009).
http://dx.doi.org/10.1016/j.cpc.2008.12.017

[41] P A Cundall, O D L Strack, A discrete numerical model for granular assemblies, Geotechnique 29, 47 (1979).
http://dx.doi.org/10.1680/geot.1979.29.1.47

[42] R D Mindlin, Compliance of elastic bodies in contact, J. Appl. Mech. 71, 259 (1949).

[43] A P F Atman, P Brunet, J Geng, G Reydellet, G Combe, P Claudin, R P Behringer, E Clement, Sensitivity of the stress response function to packing preparation, J. Phys.: Cond. Matter 17, S2391 (2005).
http://dx.doi.org/10.1088/0953-8984/17/24/002

[44] H Hertz, On the contact of elastic solids, J. Reine Angew. Math. 92, 156 (1881).

[45] M P Allen, D J Tildesley, Computer simulation of liquids, Clarendon Press, Oxford (1987).

[46] O O'Sullivan, Computing quaternions, In: The art of numerical manipulation, Eds. A Q Rista, M Nadola, Pag. 132, North Holland, Amsterdam (2003).