[1] R M Nedderman, Statics and kinematics of granular materials, Cambridge University Press, NY (1992).
http://dx.doi.org/10.1017/CBO9780511600043

[2] F J Muzzio, T Shinbrot, B J Glasser, Powder technology in the pharmaceutical industry: The need to catch up fast, Powder Technol. 124, 1 (2002).
http://dx.doi.org/10.1016/S0032-5910(01)00482-X

[3] H M Jaeger, S R Nagel, R P Behringer, Granular solids, liquids, and gases, Rev. Mod. Phys. 68, 1259 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.1259

[4] J Duran, Sands, powders, and grains: An introduction to the physics of granular materials, Springer, NY (2000).
http://dx.doi.org/10.1007/978-1-4612-0499-2

[5] W A Beverloo, H A Leniger, J van de Velde, The flow of granular solids through orifices, Chem. Eng. Sci. 15, 260 (1961).
http://dx.doi.org/10.1016/0009-2509(61)85030-6

[6] L Vanel, E. Clement, Pressure screening and fluctuations at the bottom of a granular column, Eur. Phys. J. B 11, 525 (1999).
http://dx.doi.org/10.1007/s100510050965

[7] R M Nedderman, U Tuzun, S B Savage, G T Houlsby, The flow of granular materials-1: Discharge rates from hoppers, Chem. Eng. Sci. 37, 1597 (1982).
http://dx.doi.org/10.1016/0009-2509(82)80029-8

[8] J E Hilton, P W Cleary, Granular flow during hopper discharge, Phys. Rev. E 84, 011307 (2011).
http://dx.doi.org/10.1103/PhysRevE.84.011307

[9] A Janda, I Zuriguel, D Maza, Flow rate of particles through apertures obtained from self-similar density and velocity profiles, Phys. Rev. Lett. 108, 248001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.248001

[10] C Manoc, A Janda, R Arevalo, J M Pastor, I Zuriguel, A Garcimartin, D Maza, The flow rate of granular materials through an orifice, Granul. Matter 9, 407 (2007).
http://dx.doi.org/10.1007/s10035-007-0062-2

[11] H G Sheldon, D J Durian, Granular discharge and clogging for tilted hoppers, Granul. Matter 12, 579 (2010).
http://dx.doi.org/10.1007/s10035-010-0198-3

[12] C C Thomas, D J Durian, Geometry dependence of the clogging transition in tilted hoppers, Phys. Rev. E 87, 052201 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.052201

[13] Y Bertho, C Becco, N Vandewalle, Dense bubble flow in a silo: An unusual flow of a dispersed medium, Phys. Rev. E 73, 056309 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.056309

[14] M A Aguirre, J G Grande, A Calvo, L A Pugnaloni, J-C Geminard, Pressure independence of granular flow through an aperture, Phys. Rev. Lett. 104, 238002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.238002

[15] A Guariguata, M A Pascall, M W Glimer, A K Sum, E D Sload, C A Koh, D T Wu, Jamming of particles in a two-dimensional fluid-driven flow, Phys. Rev. E 86, 061311 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.061311

[16] P G Lafond, M W Glimer, C A Koh, E D Sloan, D T Wu, A K Sum, Orifice jamming of fluid-driven granular flow, Phys. Rev. E 87, 042204 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.042204

[17] I Zuriguel, A Janda, A Garcimartin, C Lozano, R Arevalo, D Maza, Silo clogging reduction by the presence of an obstacle, Phys. Rev. Lett. 107, 278001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.278001

[18] C Lozano, A Janda, A Garcimartin, D Garza, I Zuriguel, Flow and clogging in a silo with an obstacle above the orifice, Phys. Rev. E 86, 031306 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.031306

[19] F Alonso-Marroquin, S I Azeezullah, S A Galindo-Torres, L M Olsen-Kettle, Bottlenecks in granular flow: When does an obstacle increase the flow rate in an hourglass?, Phys. Rev. E 85, 020301 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.020301

[20] K To, P Y Lai, H K Pak, Jamming of granular flow in a two-dimensional hopper, Phys. Rev. Lett. 86, 71 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.71

[21] J Choi, A Kudrolli, R R Rosales, M Z Bazant, Diffusion and mixing in gravity-driven dense granular flows, Phys. Rev. Lett. 92 174301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.174301

[22] J Choi, A Kudrolli, M Z Bazant, Velocity profile of granular flows inside silos and hoppers, J. Phys.: Cond. Matter 17, S2533 (2005).
http://dx.doi.org/10.1088/0953-8984/17/24/011

[23] J F Wambaugh, R R Hartley, R P Behringer, Force networks and elasticity in granular silos, Eur. Phys. J. E 32, 135 (2010).
http://dx.doi.org/10.1140/epje/i2010-10608-1

[24] D D Chen, K W Desmond, E R Weeks, Topological rearrangements and stress fluctuations in quasi-two-dimensional hopper flow of emulsions, Soft Matter 8 10486 (2012).
http://dx.doi.org/10.1039/c2sm26023a

[25] C C Kuo, M Dennin, Buckling-induced jamming in channel flow of particle rafts, Phys. Rev. E 87, 030201 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.030201

[26] A V Orpe, A Kudrolli, Velocity correlations in dense granular flows observed with internal imaging, Phys. Rev. Lett. 98, 238001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.238001

[27] A J Liu, S R Nagel, The jamming transition and the marginally jammed solid, Ann. Rev. Cond. Matt. Phys. 1, 347 (2010).
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104045

[28] J Koivisto, D J Durian, unpublished (2014).

[29] F A Morrison, Data correlation for drag coefficient for sphere, Department of Chemical Engineering, Michigan Technological University, Houghton, MI, www.chem.mtu.edu/~fmorriso/DataCorrelation\ForSphereDrag2010.pdf (accessed June 26, 2012). This work gives a convenient empirical function that accurately matches experimental data between the limits of $c_d=24$/Re at small Re and $c_d approx 1/2$ at large Re.

[30] L Rondon, O Pouliquen, P Aussillous, Granular collapse in a fluid: Role of the initial volume fraction, Phys. Fluids 23, 073301 (2011).
http://dx.doi.org/10.1063/1.3594200

[31] A Kudrolli, Private communication regarding experiments done with A. Orpe, private communication (2012).

[32] T Le Pennec, K J Maloy, E G Flekkoy, J C Messager, M Ammi, Silo hiccups: Dynamic effects of dilatancy in granular flow, Phys. Fluids 10, 3072 (1998).
http://dx.doi.org/10.1063/1.869835

[33] L Staron, P Y Lagree, S Popinet, The granular silo as a continuum plastic flow: The hour-glass vs the clepsydra, Phys. Fluids 24 103301 (2012).
http://dx.doi.org/10.1063/1.4757390

[34] L Staron, P Y Lagree, S Popinet, Continuum simulation of the discharge of the granular silo. A validation test for the mu(I) visco-plastic flow law, Eur. Phys. J. E 37, 5 (2014).
http://dx.doi.org/10.1140/epje/i2014-14005-6

[35] F Boyer, E Guazzelli, O Pouliquen, Unifying suspension and granular rheology, Phys. Rev. Lett. 107, 188301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.188301

[36] C Perge, M A Aguirre, P Gago, L A Pugnaloni, D Le Tourneau, J-C Geminard, Evolution of pressure profiles during the discharge of a silo, Phys. Rev. E 85, 021303 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.021303