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Noise versus chaos in a causal Fisher-Shannon plane

Osvaldo A. Rosso,1,2∗ Felipe Olivares,3 Angelo Plastino4

We revisit the Fisher-Shannon representation plane H × F , evaluated using the Bandt
and Pompe recipe to assign a probability distribution to a time series. Several stochastic
dynamical (noises with f−k, k ≥ 0, power spectrum) and chaotic processes (27 chaotic
maps) are analyzed so as to illustrate the approach. Our main achievement is uncovering
the informational properties of the planar location.

I. Introduction

Temporal sequences of measurements (or observa-
tions), that is, time-series (TS), are the basic ele-
ments for investigating natural phenomena. From
TS, one should judiciously extract information on
dynamical systems. Those TS arising from chaotic
systems share with those generated by stochastic
processes several properties that make them very
similar: (1) a wide-band power spectrum (PS), (2)
a delta-like autocorrelation function, (3) irregular
behavior of the measured signals, etc. Now, irregu-
lar and apparently unpredictable behavior is often
observed in natural TS, which makes interesting the
establishment of whether the underlying dynami-
cal process is of either deterministic or stochastic
character in order to i) model the associated phe-
nomenon and ii) determine which are the relevant
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quantifiers.

Chaotic systems display “sensitivity to ini-
tial conditions” and lead to non-periodic motion
(chaotic time series). Long-term unpredictability
arises despite the deterministic character of the tra-
jectories (two neighboring points in the phase space
move away exponentially rapidly). Let x1(t) and
x2(t) be two such points, located within a ball of
radius R at time t. Further, assume that these two
points cannot be resolved within the ball due to
poor instrumental resolution. At some later time t′,
the distance between the points will typically grow
to |x1(t′)− x2(t′)| ≈ |x1(t)− x2(t)| exp(λ |t′ − t|),
with λ > 0 for a chaotic dynamics, λ the largest
Lyapunov exponent. When this distance at time t′

exceeds R, the points become experimentally dis-
tinguishable. This implies that instability reveals
some information about the phase space popula-
tion that was not available at earlier times [1]. One
can then think of chaos as an information source.
The associated rate of generated information can be
cast in precise fashion via the Kolmogorov-Sinai’s
entropy [2, 3].

One question often emerges: is the system
chaotic (low-dimensional deterministic) or stochas-
tic? If one is able to show that the system is domi-
nated by low-dimensional deterministic chaos, then
only few (nonlinear and collective) modes are re-
quired to describe the pertinent dynamics [4]. If
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not, then the complex behavior could be modeled
by a system dominated by a very large number of
excited modes which are in general better described
by stochastic or statistical approaches.

Several methodologies for evaluation of Lya-
punov exponents and Kolmogorov-Sinai entropies
for time-series’ analysis have been proposed (see
Ref. [5]), but their applicability involves taking
into account constraints (stationarity, time series
length, parameters values election for the method-
ology, etc.) which in general make the ensuing
results non-conclusive. Thus, one wishes for new
tools able to distinguish chaos (determinism) from
noise (stochastic) and this leads to our present in-
terest in the computation of quantifiers based on
Information Theory, for instance, “entropy”, “sta-
tistical complexity”, “Fisher information”, etc.

These quantifiers can be used to detect deter-
minism in time series [6–11]. Different Informa-
tion Theory based measures (normalized Shannon
entropy, statistical complexity, Fisher information)
allow for a better distinction between deterministic
chaotic and stochastic dynamics whenever “causal”
information is incorporated via the Bandt and
Pompe’s (BP) methodology [12]. For a review of
BP’s methodology and its applications to physics,
biomedical and econophysic signals, see [13].

Here we revisit, for the purposes previously de-
tailed, the so-called causality Fisher–Shannon en-
tropy plane, H × F [14], which allows to quantify
the global versus local characteristic of the time
series generated by the dynamical process under
study. The two functionals H and F are evalu-
ated using the Bandt and Pompe permutation ap-
proach. Several stochastic dynamics (noises with
f−k, k ≥ 0, power spectrum) and chaotic processes
(27 chaotic maps) are analyzed so as to illustrate
the methodology. We will encounter that signifi-
cant information is provided by the planar location.

II. Shannon entropy and Fisher in-
formation measure

Given a continuous probability distribution func-
tion (PDF) f(x) with x ∈ ∆ ⊂ R and

∫
∆
f(x) dx =

1, its associated Shannon Entropy S [15] is

S[f ] = −
∫

∆

f ln(f) dx , (1)

a measure of “global character” that is not too
sensitive to strong changes in the distribution tak-
ing place on a small-sized region. Such is not the
case with Fisher’s Information Measure (FIM) F
[16,17], which constitutes a measure of the gradient
content of the distribution f(x), thus being quite
sensitive even to tiny localized perturbations. It
reads

F [f ] =

∫
∆

1

f(x)

[
df(x)

dx

]2

dx

= 4

∫
∆

[
dψ(x)

dx

]2

. (2)

FIM can be variously interpreted as a measure of
the ability to estimate a parameter, as the amount
of information that can be extracted from a set of
measurements, and also as a measure of the state
of disorder of a system or phenomenon [17]. In the
previous definition of FIM (Eq. (2)), the division
by f(x) is not convenient if f(x) → 0 at certain
x−values. We avoid this if we work with real prob-
ability amplitudes f(x) = ψ2(x) [16,17], which is a
simpler form (no divisors) and shows that F simply
measures the gradient content in ψ(x). The gradi-
ent operator significantly influences the contribu-
tion of minute local f−variations to FIM’s value.
Accordingly, this quantifier is called a “local” one
[17].

Let now P = {pi; i = 1, · · · , N} be a discrete
probability distribution, with N the number of pos-
sible states of the system under study. The con-
comitant problem of information-loss due to dis-
cretization has been thoroughly studied and, in par-
ticular, it entails the loss of FIM’s shift-invariance,
which is of no importance for our present purposes
[10, 11]. In the discrete case, we define a “normal-
ized” Shannon entropy as

H[P ] =
S[P ]

Smax
=

1

Smax

{
−

N∑
i=1

pi ln(pi)

}
, (3)

where the denominator Smax = S[Pe] = lnN is
that attained by a uniform probability distribution
Pe = {pi = 1/N, ∀i = 1, · · · , N}. For the FIM,
we take the expression in term of real probability
amplitudes as starting point, then a discrete nor-
malized FIM convenient for our present purposes is
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given by

F [P ] = F0

N−1∑
i=1

[(pi+1)1/2 − (pi)
1/2]2 . (4)

It has been extensively discussed that this dis-
cretization is the best behaved in a discrete envi-
ronment [18]. Here, the normalization constant F0

reads

F0 =

 1 if pi∗ = 1 for i∗ = 1 or

i∗ = N and pi = 0 ∀i 6= i∗

1/2 otherwise.
(5)

If our system lies in a very ordered state, which
occurs when almost all the pi – values are zeros,
we have a normalized Shannon entropy H ∼ 0 and
a normalized Fisher’s Information Measure F ∼ 1.
On the other hand, when the system under study is
represented by a very disordered state, that is when
all the pi – values oscillate around the same value,
we obtain H ∼ 1 while F ∼ 0. One can state that
the general FIM-behavior of the present discrete
version (Eq. (4)), is opposite to that of the Shan-
non entropy, except for periodic motions [10, 11].
The local sensitivity of FIM for discrete-PDFs is re-
flected in the fact that the specific “i−ordering” of
the discrete values pi must be seriously taken into
account in evaluating the sum in Eq. (4). This
point was extensively discussed by us in previous
works [10, 11]. The summands can be regarded as
a kind of “distance” between two contiguous prob-
abilities. Thus, a different ordering of the pertinent
summands would lead to a different FIM-value,
hereby its local nature. In the present work, we
follow the lexicographic order described by Lehmer
[22] in the generation of Bandt-Pompe PDF.

III. Description of our chaotic and
stochastic systems

Here we study both chaotic and stochastic systems,
selected as illustrative examples of different classes
of signals, namely, (a) 27 chaotic dynamic maps
[9,19] and (b) truly stochastic processes, noises with
f−k power spectrum [9].

i. Chaotic maps

In the present work, we consider 27 chaotic maps
described by J. C. Sprott in the appendix of his
book [19]. These chaotic maps are grouped as

a) Noninvertible maps: (1) Logistic map; (2) Sine
map; (3) Tent map; (4) Linear congruential
generator; (5) Cubic map; (6) Ricker’s popu-
lation model; (7) Gauss map; (8) Cusp map;
(9) Pinchers map; (10) Spence map; (11) Sine-
circle map;

b) Dissipative maps: (12) Hénon map; (13) Lozi
map; (14) Delayed logistic map; (15) Tinker-
bell map; (16) Burgers’ map; (17) Holmes
cubic map; (18) Dissipative standard map;
(19) Ikeda map; (20) Sinai map; (21) Discrete
predator-prey map,

c) Conservative maps: (22) Chirikov standard
map; (23) Hénon area-preserving quadratic
map; (24) Arnold’s cat map; (25) Gingerbread-
man map; (26) Chaotic web map; (27) Lorenz
three-dimensional chaotic map;

Even when the present list of chaotic maps is not
exhaustive, it could be taken as representative of
common chaotic systems [19].

ii. Noises with f−k power spectrum

The corresponding time series are generated as fol-
lows [20]: 1) Using the Mersenne twister genera-
tor [21] through the Matlab c© RAND function we
generate pseudo random numbers y0

i in the inter-
val (−0.5, 0.5) with an (a) almost flat power spectra
(PS), (b) uniform PDF, and (c) zero mean value.
2) Then, the Fast Fourier Transform (FFT) y1

i is
first obtained and then multiplied by f−k/2, yield-
ing y2

i ; 3) Now, y2
i is symmetrized so as to obtain a

real function. The pertinent inverse FFT is now at
our disposal, after discarding the small imaginary
components produced by the numerical approxima-
tions. The resulting time series η(k) exhibits the
desired power spectra and, by construction, is rep-
resentative of non-Gaussian noises.

IV. Results and discussion

In all chaotic maps, we took (see section i.) the
same initial conditions and the parameter-values
detailed by Sprott. The corresponding initial val-
ues are given in the basin of attraction or near
the attractor for the dissipative systems, or in the
chaotic sea for the conservative systems [19]. For
each map’s TS, we discarded the first 105 iterations
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Figure 1: Localization in the causality Fisher-
Shannon plane of the 27 chaotic maps considered
in the present work. The Bandt-Pompe PDF was
evaluated following the lexicographic order [22] and
considering D = 6 (pattern-length), τ = 1 (time
lag) and time series length N = 107 data (initial
conditions given by Sprott [19]). The inside num-
bers represent the corresponding chaotic map enu-
merated at the beginning of section i.. The let-
ters “X” and “Y” represent the time series coordi-
nates maps for which their planar representation is
clearly distinguishable. The open circle-dash line
represents the planar localization (average values
over ten realizations with different seeds) for the
stochastic process: noises with f−k power spec-
trum.

and, after that, N = 107 iterations-data were gen-
erated.

Stochastic dynamics represented by time series
of noises with f−k power spectrum (0 ≤ k ≤ 3.5
and ∆k = 0.25) were considered. For each value of
k, ten series with different seeds and total length
N = 106 data were generated (see section ii.), and
their corresponding average values were reported
for uncorrelated (k = 0) and correlated (k > 0)
noises.

The BP-PDF was evaluated for each TS of N
data, stochastic and chaotic, following the lexi-
cographic pattern-order proposed by Lehmer [22],
with pattern-lengths D = 6 and time lag τ = 1.
Their corresponding localization in the causality
Fisher-Shannon plane are shown in Fig. 1. One

can use any of these TS for evaluating the dynami-
cal system’s invariants (like correlation dimension,
Lyapunov exponents, etc.), by appealing to a time
lag reconstruction [19]. Here we analyzed TS gener-
ated by each one of chaotic maps’ coordinates when
the corresponding map is bi- or multi-dimensional.
Due to the fact that the BP-PDF is not a dynam-
ical invariant (neither are other quantifiers derived
by Information Theory), some variation could be
expected in the quantifiers’ values computed with
this PDF, whenever one or other of the TS gener-
ated by these multidimensional coordinate systems.

From Fig. 1, we clearly see that the chaotic maps
under study are localized mainly at entropic re-
gion lying between 0.35 and 0.9, and reach FIM
values from 0.4 to almost 1. A second group of
chaotic maps, constituted by: the Gauss map (7),
linear congruential generator (4), dissipative stan-
dard map (18), Sinai map (20) and Arnold’s cat
map, is localized near the right-lower corner of the
H × F plane, that is in the range 0.95 ≤ H ≤ 1.0
and 0 ≤ F ≤ 0.3. Their localization could be
understood if one takes into account that when a
2D-graphical representation of them (i.e., a graph
Xn ×Xn+1 for one dimensional maps, or Xn × Yn
for two dimensional maps) it tends to fulfill the
space, resembling the behavior of stochastic dy-
namics. However, they are chaotic and present a
clear structure when the dynamics are represented
in higher dimensional plane.

Noises with f−k power spectrum (with 0 ≤
k ≤ 5) exhibit a wide range of entropic values
(0.1 ≤ H ≤ 1) and FIM values lying between
0 ≤ F ≤ 0.5. A smooth transition in the pla-
nar location is observed in the passage from un-
correlated noise (k = 0 with H ∼ 1 and F ∼ 0)
to correlated one (k > 0). The correlation de-
gree grows as the k value increases. From Fig. 1
we gather that, for stochastic time series with in-
creasing correlation-degree, the associated entropic
values H decrease, while Fisher’s values F increase.
Taking into account that other stochastic processes,
like fBm and fGn (not shown), present a quite close
behavior to the k-noise analyzed here (see Ref.
[11]), we can think that the open circle-dash line
represents a division of the plane; above this line
all the chaotic maps are localized. It is also inter-
esting to note that, qualitatively, the same results
are obtained when the evaluations where made with
pattern length D = 4 and D = 5, as well as, differ-
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ent Fisher information measure discretization are
used.

Summing up, we have presented an extensive
series of numerical simulations/computations and
have contrasted the characterizations of determin-
istic chaotic and noisy-stochastic dynamics, as rep-
resented by time series of finite length. Surprisingly
enough, one just has to look at the different planar
locations of our two dynamical regimes. The pla-
nar location is able to tell us whether we deal with
chaotic or stochastic time series.
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