[1] E Sloan, C Koh, A Sum, N McMullen, G Shoup, A Ballard, T Palermo, J Creek, M Eaton, J Lachance, L Talley, Natural Gas Hydrates in Flow Assurance, Elsevier, Burlington, MA (2011).

[2] M D Haw Jamming, two-fluid behavior, and self-filtration in concentrated particulate suspensions, Phys. Rev. Lett. 92, 185506 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.185506

[3] D Genovese, J Sprakel, Crystallization and intermittent dynamics in constricted microfluidic flows of dense suspensions, Soft Matter 7, 3889 (2011).
http://dx.doi.org/10.1039/c0sm01338b

[4] P Knowles, G Dotro, J Nivala, J Garcia, Clogging in subsurface-flow treatment wetlands: Occurrence and contributing factors, Ecol. Eng. 37, 99 (2011).
http://dx.doi.org/10.1016/j.ecoleng.2010.08.005

[5] D G Rees, H Totsuji, K Kono, Commensurability-dependent transport of a Wigner crystal in a nanoconstriction, Phys. Rev. Lett. 108, 176801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.176801

[6] D Helbing, I Farkas, T Vicsek, Simulating dynamic features of escape panic, Nature 407, 487 (2000).
http://dx.doi.org/10.1038/35035023

[7] D Helbing, L Buzna, A Johansson, T Werner, Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transport. Sci. 39, 1 (2005).
http://dx.doi.org/10.1287/trsc.1040.0108

[8] M Moussaid, D Helbing, G Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proc. Natl. Acad. Sci. USA 108, 6884 (2011).
http://dx.doi.org/10.1073/pnas.1016507108

[9] A J Liu, S R Nagel, Jamming is not just cool anymore, Nature 396, 21 (1998).
http://dx.doi.org/10.1038/23819

[10] R Kvapil, Gravity flow of granular material in hoppers and bins in mines, Int. J. Rock Mech. Min. 2, 277 (1965).
http://dx.doi.org/10.1016/0148-9062(65)90029-X

[11] D M Walker, A basis for bunker design, Powder Technol. 1, 228 (1967).
http://dx.doi.org/10.1016/0032-5910(67)80041-X

[12] H Sakaguchi, E Ozaki, T Igarashi, Plugging of the flow of granular materials during the discharge from a silo, Int. J. Mod. Phys. B 7, 1949 (1993).
http://dx.doi.org/10.1142/S0217979293002705

[13] A Drescher, A J Waters, C A Rhoades, Arching in hoppers: II. Arching theories and critical outlet size, Powder Technol. 84, 177 (1995).
http://dx.doi.org/10.1016/0032-5910(95)02982-8

[14] K To, P Y Lai, H K Pak, Jamming of granular flow in a two-dimensional hopper, Phys. Rev. Lett. 86, 71 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.71

[15] E Clement, G Reydellet, F Rioual, B Parise, V Fanguet, J Lanuza, E Kolb, Jamming patterns and blockade statistics in model granular flows, In: Traffic and Granular Flow '99, Eds. D Helbing, H J Herrmann, M Schreckenberg, D E Wolf, Pag. 457, Springer, Berlin (2000).

[16] I Zuriguel, L A Pugnaloni, A Garcimartin, D Maza, Jamming during the discharge of grains from a silo described as a percolating transition, Phys. Rev. E 68, 030301 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.030301

[17] D Helbing, A Johansson, J Mathiesen, M H Jensen, A Hansen, Analytical approach to continuous and intermittent bottleneck flows, Phys. Rev. Lett. 97, 168001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.168001

[18] T Masuda, K Nishinari, A Schadschneider, Critical bottleneck size for jamless particle flows in two dimensions. Phys. Rev. Lett. 112, 138701 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.138701

[19] J Tang, R P Behringer, How granular materials jam in a hopper, Chaos 21, 041107 (2011).
http://dx.doi.org/10.1063/1.3669495

[20] A Janda, I Zuriguel, A Garcimartin, L A Pugnaloni, D Maza, Jamming and critical outlet size in the discharge of a two-dimensional silo, Europhys. Lett. 84, 44002 (2008).
http://dx.doi.org/10.1209/0295-5075/84/44002

[21] G Perez, Numerical simulations in granular matter: The discharge of a 2D silo, Pramana 70, 989 (2008).
http://dx.doi.org/10.1007/s12043-008-0104-2

[22] K To, Jamming transition in two-dimensional hoppers and silos, Phys. Rev. E 71, 060301 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.060301

[23] L Kondic, Simulations of two dimensional hopper flow, Granul. Matter 16, 235 (2014).
http://dx.doi.org/10.1007/s10035-013-0462-4

[24] H G Sheldon, D J Durian, Granular discharge and clogging for tilted hoppers, Granul. Matter 12, 579 (2010).
http://dx.doi.org/10.1007/s10035-010-0198-3

[25] C C Thomas, D J Durian, Geometry dependence of the clogging transition in tilted hoppers, Phys. Rev. E 87, 052201 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.052201

[26] I Zuriguel, A Janda, A Garcimartin, C Lozano, R Arevalo, D Maza, Silo clogging reduction by the presence of an obstacle, Phys. Rev. Lett. 107, 278001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.278001

[27] C Lozano, A Janda, A Garcimartin, D Maza, I Zuriguel, Flow and clogging in a silo with an obstacle above the orifice, Phys. Rev. E 86, 031306 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.031306

[28] R Arevalo, I Zuriguel, D Maza, A Garcimartin, Role of driving force on the clogging of inert particles in a bottleneck, Phys. Rev. E 89, 042205 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.042205

[29] A Guariguata, M A Pascall, M W Gilmer, A K Sum, E D Sloan, C A Koh, D T Wu, Jamming of particles in a two-dimensional fluid-driven flow, Phys. Rev. E 86, 061311 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.061311

[30] P G Lafond, M W Gilmer, C A Koh, E D Sloan, D T Wu, A K Sum., Orifice jamming of fluid-driven granular flow, Phys. Rev. E 87, 042204 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.042204

[31] I Zuriguel, A Garcimartin, D Maza, L A Pugnaloni, J M Pastor, Jamming during the discharge of granular matter from a silo, Phys. Rev. E 71, 051303 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.051303

[32] S Mondal, M M Sharma, Role of flying buttresses in the jamming of granular matter through multiple rectangular outlets, Granul. Matter 16, 125 (2014).
http://dx.doi.org/10.1007/s10035-013-0461-5

[33] S Saraf, S V Franklin Power-law flow statistics in anisometric (wedge) hoppers, Phys. Rev. E 83, 030301 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.030301

[34] S S Manna, H J Herrmann, Intermittent granular flow and clogging with internal avalanches, Eur. Phys. J. E 1, 341 (2000).
http://dx.doi.org/10.1007/s101890050034

[35] N Roussel, T L H Nguyen, P Coussot, General probabilistic approach to the filtration process, Phys. Rev. Lett. 98, 114502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.114502

[36] R Arevalo, D Maza, L A Pugnaloni, Identification of arches in 2D granular packings, Phys. Rev. E 74, 021303 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.021303

[37] L A Pugnaloni, G C Baker, Structure and distribution of arches in shaken hard sphere deposits, Physica A 337, 428 (2004).
http://dx.doi.org/10.1016/j.physa.2004.02.004

[38] C F M Magalhaes, J G Moreira, A P F Atman, Catastrophic regime in the discharge of a granular pile, Phys. Rev. E 82, 051303 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.051303

[39] C C Thomas, D J Durian, Fraction of clogging configurations sampled by granular hopper flow, arXiv:1410.0933 (2014).

[40] K To, P Y Lai, Jamming pattern in a two-dimensional hopper, Phys. Rev. E 66, 011308 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.011308

[41] A Garcimartin, I Zuriguel, L A Pugnaloni, A Janda, Shape of jamming arches in two-dimensional deposits of granular materials, Phys. Rev. E 82, 031306 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.031306

[42] A Longjas, C Monterola, C Saloma, Force analysis of jamming with disks of different sizes in a two-dimensional hopper, J. Stat. Mech. 2009, 05006 (2009).
http://dx.doi.org/10.1088/1742-5468/2009/05/P05006

[43] R C Hidalgo, C Lozano, I Zuriguel, A Garcimartin, Force analysis of clogging arches in a silo, Granul. Matter 15, 841 (2014).
http://dx.doi.org/10.1007/s10035-013-0451-7

[44] C Lozano, G Lumay, I Zuriguel, R C Hidalgo, A Garcimartin, breaking arches with vibrations: The role of defects, Phys. Rev. Lett. 109, 068001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.068001

[45] C E Davies, M Desai, Blockage in vertical slots: Experimental measurement of minimum slot width for a variety of granular materials, Powder Technol. 183, 436 (2008).
http://dx.doi.org/10.1016/j.powtec.2008.01.009

[46] A Kunte, P Doshi, A V Orpe, Spontaneous jamming and unjamming in a hopper with multiple exit orifices, Phys. Rev. E 90, 020201 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.020201

[47] R O Unac, A M Vidales, L A Pugnaloni, The effect of the packing fraction on the jamming of granular flow through small apertures, J. Stat. Mech. 2012, 04008 (2012).
http://dx.doi.org/10.1088/1742-5468/2012/04/P04008

[48] J R Valdes, J C Santamarina, Particle clogging in radial flow: Microscale mechanisms, SPE J. 11, 193 (2006).
http://dx.doi.org/10.2118/88819-PA

[49] L Pournin, M Ramaioli, P Folly, Th M Liebling, About the influence of friction and polydispersity on the jamming behavior of bead assemblies, Eur. Phys. J. E 23, 229 (2007).
http://dx.doi.org/10.1140/epje/i2007-10176-5

[50] T Kanzaki, M Acevedo, I Zuriguel, I Pagonabarraga, D Maza, R C Hidalgo, Stress distribution of faceted particles in a silo after its partial discharge, Eur. Phys. J. E 34, 133 (2011).
http://dx.doi.org/10.1140/epje/i2011-11133-5

[51] D Hohner, S Wirtz, V Scherer, A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method, Powder Technolo. 226, 16 (2012).
http://dx.doi.org/10.1016/j.powtec.2012.03.041

[52] E Longhi, N Easwar, N Menon, Large force fluctuations in a flowing granular medium, Phys. Rev. Lett. 89, 045501 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.045501

[53] A Janda, R Harich, I Zuriguel, D Maza, P Cixous, A Garcimartin, Flow-rate fluctuations in the outpouring of grains from a two-dimensional silo, Phys. Rev. E 79, 031302 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.031302

[54] S Tewari, M Dichter, B Chakraborty, Signatures of incipient jamming in collisional hopper flows, Soft Matter 9, 5016 (2013).
http://dx.doi.org/10.1039/c3sm27760g

[55] C Mankoc, A Garcimartin, I Zuriguel, D Maza, L A Pugnaloni, Role of vibrations in the jamming and unjamming of grains discharging from a silo, Phys. Rev. E 80, 011309 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.011309

[56] A Janda, D Maza, A Garcimartin, E Kolb, J Lanuza, E Clement, Unjamming a granular hopper by vibration, Europhys. Lett. 87, 24002 (2009).
http://dx.doi.org/10.1209/0295-5075/87/24002

[57] I Zuriguel, D R Parisi, R C Hidalgo, C Lozano, A Janda, P A Gago, J P Peralta, L M Ferrer, L A Pugnaloni, E Clement, D Maza, I Pagonabarraga, A Garcimartin. Clogging transition of many-particle systems flowing through bottlenecks, Sci. Rep. 4, 7324 (2014).
http://dx.doi.org/10.1038/srep07324

[58] J R Valdes, J C Santamarina, Clogging: Bridge formation and vibration-based destabilization, Canadian Geotech. J. 45, 177 (2008).
http://dx.doi.org/10.1139/T07-088

[59] T W Muecke, Formation fines and factors controlling their movement in porous media, J. Petrol. Technol. 31, 144 (1979).
http://dx.doi.org/10.2118/7007-PA

[60] T S Majmudar, R P Behringer, Contact force measurements and stress-induced anisotropy in granular materials, Nature 435, 1079 (2005).
http://dx.doi.org/10.1038/nature03805

[61] J Hadjigeorgiou, J F Lessard, Numerical investigations of ore pass hang-up phenomena, Int. J. Rock Mech. Min. 44, 820 (2007).
http://dx.doi.org/10.1016/j.ijrmms.2006.12.006

[62] J-C. Tsai, W Losert, G A Voth, J P Gollub, Two-dimensional granular Poiseuille flow on an incline: Multiple dynamical regimes, Phys. Rev. E 65, 011306 (2001).
http://dx.doi.org/10.1103/PhysRevE.65.011306

[63] A Janda, I Zuriguel, A Garcimartin, D Maza, Clogging of granular materials in narrow vertical pipes (unpublished).

[64] C J O Reichhardt, E Groopman, Z Nussinov, C Reichhardt, Jamming in systems with quenched disorder, Phys. Rev. E 86, 061301 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.061301

[65] Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.