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Adapting a Fourier pseudospectral method to Dirichlet boundary
conditions for Rayleigh–Bénard convection

I. C. Ramos,1 C. B. Briozzo1∗

We present the adaptation to non–free boundary conditions of a pseudospectral method
based on the (complex) Fourier transform. The method is applied to the numerical in-
tegration of the Oberbeck–Boussinesq equations in a Rayleigh–Bénard cell with no-slip
boundary conditions for velocity and Dirichlet boundary conditions for temperature. We
show the first results of a 2D numerical simulation of dry air convection at high Rayleigh
number (R ∼ 109). These results are the basis for the later study, by the same method,
of wet convection in a solar still.

I. Introduction

Experimental observations [1] show that the on-
set of a turbulent convective flux can significantly
enhance the efficiency of a basin-type solar still,
but until now a theoretical explanation is lacking.
Any adequate hydrodynamical simulation must in-
corporate the effects of moisture and condensa-
tion. Recent works [2, 3] show that this can be
achieved through a Boussinesq-like approximation,
which simplifies considerably the problem. How-
ever, realistic simulations are still demanding, given
the need to resolve fine flux details and cope with
Rayleigh numbers up to ∼ 109 [4].

Spectral methods [5] are well suited for this kind
of tasks, and have many attractive features: they
are simple to implement, show much better resolu-
tion and accuracy properties than finite difference
or finite volume methods, and are highly efficient
in large-scale simulations [6]. Fourier-based pseu-
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dospectral methods are the simplest and fastest,
since the discretized spatial differential operators
are local, nonlinear terms can be computed through
Fast Fourier Transform (FFT) convolutions, and
solving the Poisson equation originating from the
incompressibility (divergence-free) condition is al-
most trivial. Nevertheless, they usually work only
for free (in fact, periodic) boundary conditions
(BCs).

The presence of non-free (e.g., Dirichlet or
Neumann) BCs introduces additional complica-
tions. For example, two-dimensional Rayleigh-
Bénard convection with laterally periodic BCs
can be treated by using a spectral Galerkin–
Fourier technique in the horizontal coordinate and
a collocation-Chebyshev method in the vertical one
[7], but vertical derivatives must then be computed
by matrix multiplication. On a grid with N hor-
izontal and M vertical points, this needs the so-
lution of a linear system of dimension M for each
of the N horizontal Fourier modes, at each time-
integration step.

Another complication with non-free BCs arises
from the need to fulfill numerically the divergence-
free condition, leading mainly to two different
groups of methods (see Ref. [6] and references
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therein). In a first group the velocity field is writ-
ten in terms of scalar potentials such that the
divergence-free condition is satisfied by construc-
tion, e.g., in the 2D streamfunction-vorticity for-
mulation or the 3D decomposition into toroidal
and poloidal velocity potentials. In these meth-
ods, pressure is not present in the equations, but
they lead to systems of higher-order partial dif-
ferential equations with coupled BCs. In a sec-
ond group, a primitive variable formulation of the
equations is adopted and projection methods [8]
are used to decouple velocity and pressure. These
methods use a specific splitting of the equation sys-
tem based on the chosen time-integration scheme,
and determine pressure by projecting an appropri-
ate velocity field onto a divergence-free space, lead-
ing to predictor-corrector algorithms. Besides the
problem of correctly specifying the pressure BCs
[9, 10], these methods require solving a Poisson
equation for the pressure at each time-integration
step. On a N = N × M grid, the best Fourier-
based Fast Poisson Solvers (FPS) have operation
counts O(N log2N ) for the lowest (second) order
discretization (and significantly worse for higher or-
ders) [11,12], and those using GMRES are KO(N )
with K & 100 [13–15].

In this work, we will show how a Fourier-based
pseudospectral method can be adapted to simple
non-free (but periodic) BCs without losing its more
appealing features. This is a first step towards
building a pseudospectral simulation of wet air con-
vection inside a basin-type solar still, and must be
considered just as a proof of concept.

II. System

We consider 2D dry air convection in a Rayleigh–
Bénard cell of width L = 1 m and heightH = 0.5 m,
close to room temperature and with temperature
differences ∆T = Th − Tc up to ∼ 65K between
the hot lower (T = Th) and cold upper (T = Tc)
plates (roughly the parameters of a real still [1]).
Discarding thermal fluctuations and the heat gen-
erated by viscous dissipation, and assuming an in-
compressible fluid across which all thermodynami-
cal parameters change little, the dynamics is given
by [16]

ρ(∂t + u · ∇)u = −∇P + η∇2u− ρgẑ, (1)

ρcp(∂t + u · ∇)T = K∇2T, (2)

∇ · u = 0. (3)

In these equations, the dynamical variables are the
density ρ, the velocity u, the temperature T , and
the pressure P . The parameters are the shear (or
dynamic) viscosity η, the constant pressure specific
heat capacity cp, the thermal conductivity K, and
the gravitatioinal acceleration g.

The Boussinesq approximation [17] consists in
discarding the dependence of η, cp, and K on tem-
perature and density, keeping

ρ = ρ̄[1− α(T − T̄ )] (4)

in the buoyancy term (−ρgẑ in Eq. 1) but other-
wise setting ρ = ρ̄ elsewhere. Here, T̄ = 1

2 (Th+Tc)
is a reference temperature, ρ̄ is a reference den-
sity (that of air at normal temperature and pres-
sure), and α is the thermal expansion coefficient.
Dropping the bars signifying reference quantities,
absorbing some constants into the pressure gradi-
ent term, and defining the viscous diffusivity (or
kinematic viscosity) ν = η/ρ and the thermal dif-
fusivity κ = K/(ρcp), we obtain the (dimensional)
Oberbeck–Boussinesq equations [17]

(∂t + u · ∇)u = −∇(P/ρ) + ν∇2u− αgT ẑ, (5)

(∂t + u · ∇)T = κ∇2T, (6)

∇ · u = 0. (7)

Assuming perfect thermal contact with the lower
(z = 0) and upper (z = H) plates, these equations
admit the stationary conductive solution

u = 0,

T0(z) = T̄ − ∆T

H
z′,

P0(z) = P̄ + ρgα

(
−T̄ z′ + ∆T

2H
z′2
)
, (8)

where P̄ is a reference (e.g. normal atmospheric)
pressure, and z′ = z −H/2.

We now scale lengths with the cell height H,
times with the characteristic vertical thermal dif-
fusion time tc = H2/κ, and temperatures with the
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temperature difference ∆T . The nondimensional
lengths, times, and velocities are then

r′ =
1

H
r, t′ =

κ

H2
t, u =

κ

H
u′. (9)

We also define the nondimensional temperature θ
and pressure P ′ by

θ =
1

∆T
(T − T0(z)) ,

P ′ =
H2

κν
(P − P0(z)) . (10)

Substituting into Eqs. (5)–(7), discarding the
primes for simplicity, and absorbing all pure gra-
dient terms into the pressure, we get the dimen-
sionless Oberbeck–Boussinesq equations [17]

σ−1(∂t + u · ∇)u = −∇P + θẑ +∇2u, (11)

(∂t + u · ∇)θ = Ruz +∇2θ, (12)

∇ · u = 0, (13)

where

R =
gα∆TH3

κν
(14)

is the Rayleigh number and σ = ν/κ is Prandtl’s
number (' 0.7 for dry air). The BCs we adopt
are periodic in the horizontal direction, and homo-
geneous Dirichlet for both velocity u (no-slip BCs)
and temperature θ (perfect thermal contact) on the
lower and upper plates.

Note that Eq. (13) is not a differential equation
but a constitutive relationship, expressing the in-
compressibility of the flux. In fact, the pressure
term in Eq. (11) is computed by enforcing Eq.(13),
which gives

∇2P = −σ−1Σi,j∂i∂j(uiuj) + ∂zθ, (15)

where i, j = x, z. In primitive variable integration
schemes, this Poisson equation must be solved with
adequate BCs at each time-step [6,9], to insure ∇ ·
(∂tu) = 0.

III. Helmholtz decomposition

Given a vector field f , twice continuously differen-
tiable, Helmholtz’s Theorem [18] states that it can
be decomposed as

f = f‖ + f⊥. (16)

Here, f‖ and f⊥ are the longitudinal (or irrota-
tional) and the transverse (or solenoidal) compo-
nents of the field [8], respectively, with

∇× f‖ = 0, ∇ · f⊥ = 0. (17)

We are now going to rewrite Eq. (11) in the form

∂tu = σ (f −∇P ) (18)

with

f = −σ−1(u · ∇)u + θẑ +∇2u. (19)

Then, if ∇ · u = 0 initially, the incompressibility
condition Eq. (13) requires

∇ · (f −∇P ) = 0. (20)

This amounts to requiring the field f − ∇P to be
purely transverse, that is

(f −∇P )‖ = f‖ −∇P = 0, (21)

where we used (∇P )‖ ≡ ∇P , since the pressure
gradient is purely longitudinal. This shows that
the only effect of the term ∇P in Eq. (18) is to
cancel the longitudinal component of f . Equation
(18) can then be set as

∂tu = σf⊥, (22)

with no explicit reference to a pressure field.
In 2D and in free space (that is, disregarding sur-

face terms), the longitudinal and transverse compo-
nents of f can be computed as the projections

f̃‖ =
(
f̃ · k̂

)
k̂, f̃⊥ =

(
f̃ · k̂′

)
k̂′ (23)

of its Fourier transform f̃ along the unit vectors

k̂ =
(kx, kz)√
k2x + k2z

, k̂′ =
(−kz, kx)√
k2x + k2z

. (24)
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However, on a finite domain, the surface terms can-
not be ignored, since they are essential for f⊥ to
have the correct BCs, which by Eq. (22) are the
same as those for u in Eq. (11). Using Eq. (24),
the field f̃⊥ in Eq. (23) can be seen to be a particu-
lar solution (the free–space solution) of the Poisson
equation

∇2f⊥ = F−1{(−kz, kx)(−kz f̃x + kxf̃z)}, (25)

where F−1 stands for the inverse Fourier transform.
To be able to impose the required BCs, we need the
general solution of this equation, which we can get
by adding the general solution of the corresponding
homogeneous equation ∇2f⊥ = 0.

The required transverse component of f can then
be redefined as

f⊥ = v + w, (26)

with

ṽ = (−kz, kx)
−kz f̃x + kxf̃z

k2x + k2z
(27)

and

∇2w = 0, ∇ ·w = 0, (28)

where the last equation is needed to insure the
transversality of w and hence of f⊥. This require-
ment can be automatically fulfilled by writing w
explicitly as

w̃ = (−kz, kx)w̃ (29)

with the scalar field w satisfying

∇2w = c (30)

where c is a constant. Noting that Eq. (27) can
also be rewritten as

ṽ = (−kz, kx)ṽ, ṽ =
−kz f̃x + kxf̃z

k2x + k2z
, (31)

we can also rewrite Eq. (26) as

f̃⊥ = (−kz, kx)(ṽ + w̃), (32)

which shows explicitly the transversality of f⊥. The
determination of the value of c, and the treatment
of possible divergences in ṽ at k = 0, are closely
related and will be dealt with in the next section.
The BCs for w at the lower and upper plates can be
obtained from those for f⊥, and are w = −v; the
BCs on the horizontal direction are periodic but
otherwise free, and will be automatically fulfilled
by the constructive procedure for w given in the
next section.

IV. Ultra-fast Laplace solver

We start by solving Eq. (30) with c = 0, that
is Laplace’s equation, on the rectangular domain
0 ≤ x ≤ L, 0 ≤ z ≤ H, which is an elementary
problem in harmonic analysis. Over an unbounded
domain, the solutions have the form eiλxeλz, where
λ is an arbitrary separation constant; the particular
solutions for the case λ = 0 are 1, x, z, and xz.
Periodicity in x on [0, L] imposes λ = 2πp/L with
p ∈ Z; the general solution is then

w =
∑
p

cpe
−i2πpx/Le−2πpz/L + a+ bz , (33)

with cp, a, and b (possibly complex) constants. For
convenience, and without loss of generality, we will
rewrite it in the form

w =
∑
p

e−i2πpx/L
[
ap cosh

2πpz′

L

+(1− δp,0)bp sinh
2πpz′

L
+ δp,0b0z

′
]
, (34)

where ap and bp are constants, and z′ = z −H/2.
Here, we have used that cosh(0) = 1 to absorb all
constant terms in a0, and used that sinh(0) = 0 to
absorb the linear term in z′ as the particular term
of the sum for p = 0, leaving Eq. (34) explicitly
in the form of a (complex) Fourier series in x. The
hyperbolic and linear functions in z′ can, in turn, be
rather trivially expanded as complex Fourier series
in z on the interval [0, H], leaving w in the form of
the double Fourier series
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w =∑
p,q

e−i2πpx/Le−i2πqz/H
[
apC̃pq + bpS̃pq

]
, (35)

where q ∈ Z and C̃pq, S̃pq are the expansion co-
efficients. Discretizing w on a coordinate grid
(xn, zm) = (n∆x/N,m∆z/M) restricts the range
of p and q respectively to [0, N − 1] and [0,M − 1]
(so the horizontal and vertical wavenumbers are be-
low the respective Nyquist frequencies), reducing
Eq. (35) to a (double) discrete Fourier transform
(DFT), whose coefficients

w̃pq = apC̃pq + bpS̃pq (36)

give the discretization of w on the wavenumber
grid. The matrices C̃pq and S̃pq are given explicitly
by

C̃pq = (37)
1

M

sinh
(
kx,p

H
M

)
sinh

(
kx,p

H
2

)
cosh

(
kx,p

H
M

)
− cos

(
kz,q

H
M

) , (p, q) 6= (0, 0)

1, (p, q) = (0, 0)

S̃pq = (38)
− 1

M

i sin
(
kz,q

H
M

)
sinh

(
kx,p

H
2

)
cosh

(
kx,p

H
M

)
− cos

(
kz,q

H
M

) , p 6= 0

− 1

M

i sin
(
kz,q

H
M

)
H
2

1− cos
(
kz,q

H
M

) , p = 0, q 6= 0

0, (p, q) = (0, 0) ,

where kx,p = 2πp/L and kz,q = 2πq/H. Here we
have preferred, for simplicity when writing the nu-
merical code, to replace the intervals 0 ≤ p ≤ N−1
and 0 ≤ q ≤ M − 1 by the equivalent intervals
−N/2 ≤ p ≤ N/2 and −M/2 ≤ q ≤ M/2, with
their respective extreme points identified.

Equation (36) then provides the general solution
of ∇2w = 0 on [0, L] × [0, H], discretized on the
wavenumber grid. The corresponding general so-
lution of Eq. (30) can then be expressed formally
as

w̃pq = apC̃pq + bpS̃pq −
cδp,0δq,0
k2x,p + k2z,q

. (39)

Then from Eqs. (31) and (32), the discretization of
f⊥ on the wavenumber grid will be expressed as

f̃⊥,pq = (−kz,q, kx,p)
[
apC̃pq + bpS̃pq

+
−cδp,0δq,0 − kz,q f̃x,p + kx,pf̃z,q

k2x,p + k2z,q

]
. (40)

The constant c can now be formally chosen to can-
cel the possible divergence at k = 0; in practice, we
set c = 0 and redefine ṽ00 to be an arbitrary but
finite constant, which without loss of generality can
also be taken to vanish.

Imposing the BCs w = −v, or equivalently
f⊥ = 0, at z = 0 and z = H, is achieved as fol-
lows: First we note that any field discretized on the
wavenumber grid through a DFT of its discretiza-
tion on the coordinate grid is automatically peri-
odic in both the horizontal and vertical directions,
so the BCs at z = 0 and z = H will give identical
sets of equations. Next we use the fact that

f⊥,n0 =
∑
p,q

e−ikx,pxn f̃⊥,pq , (41)

together with the completitude of the DFT, to
rewrite the BC at z = 0 as∑

q

f̃⊥,pq = 0 ∀p. (42)

We then use Eq. (40) and the parity of C̃pq (even

in q) and S̃pq (odd in q) to obtain the conditions

ap
∑
q

C̃pq = −
∑
q

ṽpq ,

bp
∑
q

kz,qS̃pq = −
∑
q

kz,q ṽpq , (43)

from which the coefficients ap and bp can be im-
mediately retrieved. Finally, substituting into Eq.
(40) leads to

f̃⊥,pq = (−kz,q, kx,p)

[
ṽpq − cpq

∑
q

ṽpq

−spq
∑
q

kz,q ṽpq

]
, (44)

where it is understood that we take ṽ00 = 0, and
we have introduced the normalized matrices
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cpq =
C̃pq∑
q′ C̃pq′

, spq =
S̃pq∑

q′ kz,q′ S̃pq′
. (45)

Equations (44) and (31) show that the trans-
verse field f̃⊥,pq on the wavenumber grid can be ob-
tained directly in terms of the non-transverse field
f̃pq without needing, at any point, to return to the
coordinate grid. Moreover, Eq. (45) shows that cpq
and spq are given matrices that can be computed
just once at the start of the simulation, as is the de-
nominator k2x,p + k2z,q in Eq. (31). The only tasks
to be performed at each time-step are then: first,
computing the scalars ṽpq from f̃pq, requiring three
multiplications per grid point; second, computing
the sums in Eq. (44), which requires one multipli-
cation per grid point; third, multiplying them by
cpq and spq, costing two multiplications per grid
point; and fourth, multiplying by kz,q and kx,p at

each grid point. The total cost of obtaining f̃⊥,pq is
then 8N multiplications on aN = N×M grid, thus
outperforming even the best FPS by a significant
factor on large grids.

It must be noted that the method introduced
here has some similarity to the streamfunction–
vorticity formulation [6], in the sense that the scalar
fields ṽ and w̃ play a role similar to these potentials.
However, in our method they are not taken as dy-
namical variables, and the evolution equations are
not formulated in terms of them but of primitive
variables. The method presented here shows also
a strong similarity with projection methods [8, 9],
but differently from them, pressure is not computed
along the time evolution and, in fact, does no longer
appear in the evolution equations.

V. Algorithm outline

We present now an outline of the numeric algorithm
as we implemented it in the simulations.

Initialization:

• Take zero velocity and Gaussian white noise
for the temperature (with amplitude of the or-
der of thermal noise), discretized on the coor-
dinate grid, and take their FFT to get ũx,pq,

ũz,pq, θ̃pq on the wavenumber grid.

• Pre-compute (just once) the matrices cpq and
spq, and k2x,p + k2z,q.

Time-stepping:

• Compute convolutions of ũx,pq, ũz,pq, θ̃pq by
FFT with 2/3 rule.

• Compute r.h.s. of evolution equations as

(∂tũx)pq ← ikx,p(ũx ∗ ũx)pq + ikz,q(ũz ∗ ũx)pq

−σk2pqũx,pq
(∂tũz)pq ← ikx,p(ũx ∗ ũz)pq + ikz,q(ũz ∗ ũz)pq

−σk2pqũz,pq + σθ̃pq

(∂tθ̃)pq ← ikx,p(ũx ∗ θ̃)pq + ikz,q(ũz ∗ θ̃)pq
−k2pq θ̃pq +Rũz,pq.

• Compute (∂tũ) as

(∂tũ)pq ← −kz,q(∂tũx)pq+kx,p(∂tũz)pq
k2pq

(∂tũ)pq ← (−kz,q, kx,p)×
[(∂tũ)pq − c̃pqΣq′(∂tũ)pq′

−s̃pqΣq′kz,q′(∂tũ)pq′ ] .

Here, we have denoted by (f̃ ∗ g̃)pq the convolu-

tion product of fields f̃pq and g̃pq discretized on the
wavenumber grid, which is performed by FFT.

It must be noted that the spatial discretization
of the evolution equations has been performed in a
closed form, independent of the time-stepping algo-
rithm to be employed to solve the resulting set of
ordinary differential equations, outlined above. We
must also note that this system does not involve
multiplication by matrices with dimension N , the
only nonlocal parts being the convolution products
(handled through FFT) and the elimination of the
longitudinal component of the velocity.

The time-stepping can then be performed by any
algorithm designed to solve systems of ordinary dif-
ferential equations. In our case, we opted for an
adaptive-stepsize fifth order Runge–Kutta–Cash–
Karp algorithm [19], which in our previous expe-
rience we have found efficient, stable, and flexible.

VI. Test runs

Even for a simple system like the one we are study-
ing here, the phenomenology found is rich; we
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Figure 1: Temperature and velocity fields for R =
5Rc at t = 2tc on a 32×16 grid.

Figure 2: Temperature and velocity fields for R =
50Rc at t = tc on a 64×32 grid.

present only a brief outline. All results are given in
terms of the laterally-infinite cell crytical Rayleigh
number Rc ∼ 1701, and the characteristic vertical
diffusion time tc which for our cell and medium is
∼ 11797s. Coordinates and fields are in the dimen-
sionless variables of Eqs. (11)–(13).

At low R, a stationary regime state, consisting in
two counter-rotating rolls, is reached in times ∼ tc
or less. This time falls rapidly with increasing R,
to ∼ 0.1tc at R ∼ 1000Rc (see Figs. 1, 2 and 3).

Around R ∼ 5000Rc, these rolls develop lateral
oscillations, and the first “secondary structures”
(small whirlpools) appear near the base of the as-
cending and descending plumes (see Fig. 4).

Above R ∼ 5000Rc, the regime state becomes
disordered and aperiodic, consisting of intermittent
plumes and whirlpools in a wide size range (see Fig.
5).

AtR ∼ 5×105Rc, the temperature difference is∼
65K; the smallest whirlpools are ∼ 1cm wide, and
the typical wind speeds are ∼ 1m/s, in agreement

Figure 3: Temperature and velocity fields for R =
500Rc at t = 0.25tc on a 128×64 grid (velocity
decimated to a 64×32 grid).

Figure 4: Temperature and velocity fields for R =
5000Rc at t = 0.05tc on a 192×96 grid (velocity
decimated to a 64×32 grid).

with experimental observations [1] (see Fig. 6). The
time to reach this regime state is rather short, ∼
0.001tc.

Note that in all figures, except for Figs. 1 and
2, the velocity grid has been decimated to enhance
clarity.

VII. Code performance

Over the full range of R tested here (more than
five orders of magnitude), the code maintained
the typical velocity divergence and the field val-
ues at the bottom and top boundaries at essen-
tially machine-precision zero, showing that the im-
plemented method is sound.

Also over this range of R, the grid spacing needed
to achieve “smooth” fields (i.e., to capture all the
physical detail down to the smallest present scales)
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Figure 5: Temperature and velocity fields for R =
5×104Rc at t = 0.01tc on a 384×192 grid (velocity
decimated to a 64×32 grid).

is consistent with the width of the (thermal) bound-
ary layer. However, for coarser grids the code
still gives qualitatively sound results; typically a
checkerboard-like instability develops, but the al-
gorithm keeps it quenched, showing very good sta-
bility even in presence of a severe accuracy loss.

The algorithm is also fast: the simulation for R ∼
109 (see Fig. 6), on a 512×256 grid, took less than
one day per simulated minute on a single core of
the 3GHz PentiumD CPU on which all our runs
were performed, with no code optimization.

It is difficult to find in the literature a directly
comparable simulation for more accurate bench-
marking. However, from Ref. [6] we can see
that, for example, the relaxation to a (steady)
regime state in Rayleigh–Bénard convection at R .
30000 ∼ 20Rc on a∼ 20000-node grid takes 46 min-
utes on a similar processor at similar speed (3.2GHz
Pentium 4), by the method implemented there. In
the case of our code, at R = 20Rc on a 200 × 100
grid, and with the sole optimization of grouping
the real FFTs in pairs (see the 2FFT algorithm in
Ref. [19]), the equivalent relaxation took 8 minutes,
which is shorter by a factor of ∼ 6. But it must be
taken into account that with our initial conditions
(zero velocities and thermal noise in temperatures)
the convection onset is slow, and is followed by a
transient stage with strong and disordered convec-
tive patterns that decay to the regime state very
slowly.

Figure 6: Temperature and velocity fields for R =
5×105Rc at t = 0.002tc on a 512×256 grid (velocity
decimated to a 64×32 grid).

VIII. Conclusions and outlook

We have been able to show that a Fourier-based
pseudospectral method can be adapted to a (ad-
mittedly simple) non-free BC setting, at the cost of
moderate analytical work on the solutions of Pois-
son’s and Laplace’s equations. The method is for-
mulated in primitive variables, but the pressure is
not explicitly computed nor referenced, like in a
streamfunction-vorticity formulation. It also shares
some properties with projection methods, but it de-
couples the implementation of the incompressibility
condition from the time-stepping scheme, allowing
great flexibility in the selection of the last. The re-
sulting code is fast and stable, and implements the
BCs and the incompressibility condition essentially
to machine-precision.

Work on the extension of this scheme to a fully
closed Rayleigh-Bénard cell (i.e., with non-free BCs
also on the lateral walls) is currently under course.
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