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How we move is universal: Scaling in the average shape of human activity

Dante R. Chialvo,1 Ana Maŕıa Gonzalez Torrado,2 Ewa Gudowska-Nowak,3

Jeremi K. Ochab,4 Pedro Montoya,2 Maciej A. Nowak,3,4 Enzo Tagliazucchi5

Human motor activity is constrained by the rhythmicity of the 24 hours circadian cycle,
including the usual 12-15 hours sleep-wake cycle. However, activity fluctuations also ap-
pear over a wide range of temporal scales, from days to a few seconds, resulting from the
concatenation of a myriad of individual smaller motor events. Furthermore, individuals
present different propensity to wakefulness and thus to motor activity throughout the cir-
cadian cycle. Are activity fluctuations across temporal scales intrinsically different, or is
there a universal description encompassing them? Is this description also universal across
individuals, considering the aforementioned variability? Here we establish the presence of
universality in motor activity fluctuations based on the empirical study of a month of con-
tinuous wristwatch accelerometer recordings. We study the scaling of average fluctuations
across temporal scales and determine a universal law characterized by critical exponents
α, τ and 1/µ. Results are highly reminiscent of the universality described for the average
shape of avalanches in systems exhibiting crackling noise. Beyond its theoretical relevance,
the present results can be important for developing objective markers of healthy as well
as pathological human motor behavior.
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I. Introduction

The most obvious periodicity of human (as well as
animal) motor activity is the circadian twenty four
hours modulation. However, smaller fluctuations
are evident on a wide range of temporal scales, from
days to a few seconds. Data shows that the activity
evolves in bursts of all sizes and durations which are
known to be scale-invariant [1–8] regardless of the
origins and intended consequences of such activity.
Despite the variety of results, the mechanisms un-
derlying the scale-invariant behavior of motor ac-
tivity remain to be elucidated. Considering the in-
termittent nature of human motor activity - com-
prising brief activity excursions separated by peri-
ods of quiescence - a natural approach would be to
study the average shape of the events, following re-
cent results [9–12] which show that for a large class
of processes, the average shape is a scaling function
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determined mostly by the temporal correlations of
the process and its nonlinearities [13].

In the present work, long time series of human
motor activity are analyzed, recorded via wrist-
watch accelerometer, lasting approximately one
month. We establish first the presence of truncated
scale-invariance in the distribution of the durations
of the events as well as in its power spectral den-
sity, as described previously in similar type of data.
Afterwards, we uncover the average shape of the
bursts of activity and derive the scaling function
and its associated exponents. Finally, we discuss
the origins of such scaling and some possible appli-
cations.

II. Materials and methods

The recordings analyzed were part of a larger study
and included six healthy, non-smokers, drug-free
volunteers (mean age 50.1 years, S.D. = 6.8). The
study was approved by the Bioethics Commission
of the University of Isles Baleares (Spain). Par-
ticipants were informed about the procedures and
goals of the study, and provided their written con-
sent. After determining their handedness, each
subject was provided with a wristwatch-sized activ-
ity recorder (Actiwatch from Mini- Mitter Co., OR,
USA) measuring acceleration changes in the fore-
arm in any plane. Each data point of activity corre-
sponded to the number of zero crossings in acceler-
ation larger than 0.01 G (sampled at 32 Hz and in-
tegrated over a 30-second window length). Records
of several thousands of data points were kept in the
device’s internal memory until being downloaded to
a personal computer every week. Subjects wore the
device in their non-dominant arm continuously for
up to several weeks (mean 28.1 days, S.D.= 4.). Af-
ter careful visual inspection of the data to exclude
sets with gaps (due to subject non-compliance), a
combined total of 280 days of data was available
for further analysis.

III. Results

For ease of presentation, we will use recordings from
a single subject to describe the main results. Nev-
ertheless, results are robust as well as similar for
the entire group of subjects in the study. A typical
recording is presented in Fig. 1. Panel A shows
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Figure 1: Example data set, distribution of suc-
cessive increments and their spectral power. Panel
A: Time series of activity x(n) recorded continu-
ously from a subject during a month. Individual
traces correspond to consecutive days. The top
subpanel depicts daily activity averaged over the
entire month. Panel B: Time series of successive
increments I(n) = x(n+ 1)− x(n) (normalized by
its SD) for the same data. Panel C: Probability
density distribution of the time series of succes-
sive increments I(n) (continuous line), exhibiting
exponential tails (compare with the dotted line, a
Gaussian of the same variance). Panel D: Power
spectral density (black line) of the time series of
successive increments I(n) of panel B. This is scale
invariant S(f) ∼ fγ with γ = 0.9 (dashed line). In
contrast, for the randomly shuffled increments, the
serial correlations vanish and a flat spectral density
is obtained (red).

a full month of continuously recorded activity from
this subject, who is particularly regular in her daily
routines. The subject wakes up with the alarm
clock at 6:45 a.m. on week days and has lunch fol-
lowed by a short nap each day (between 2:00 p.m.
and 4:00 p.m. Panel B displays the time series of
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Figure 2: Scaling of activity events in a single
subject (same dataset as in Fig. 1). Panel A:
The complementary cumulative distribution func-
tion (CCDF) for event durations (T) and sizes (S)
obeys power-laws with exponents α′ = 0.70 and
τ ′ = 0.44, respectively (dashed lines). Note that
here the densities are cumulative, thus the expo-
nents of the respective PDFs are α = α′ + 1 and
τ = τ ′ + 1. The waiting time between events
falls exponentially. Panel B: The average size of
a given duration is well described (for small T) by
〈S〉(T ) ∼ Tµ+1 with µ + 1 = 1.59 (blue dashed
line) comparable with results obtained from fitting
within the scaling region (red filled symbols) giving
µ+ 1 = 1.61.

the successive increments of the signal x(n), defined
as I(n) = x(n+ 1)− x(n).

The large-scale statistical features of the time se-
ries presented in Fig. 1 are already well known.
The density distribution of the successive incre-
ments i(n) is non-Gaussian, as can be appreci-
ated by a joint plot with a Gaussian distribution
of the same variance (Fig. 1, Panel C). It is known

that the power spectrum of the activity decays as
S(f) ∼ fβ [1, 2]. Because this type of processes
are likely to be non-stationary, it is best to esti-
mate the exponents of the spectral density by doing
the calculations over the time series of successive
increments, whose density distribution is station-
ary. For instance, for Brownian motion (which is
summed white noise), the power spectrum decays
S(f) ∼ fβ with β = −2 and for white noise β = 0;
the summed time series has an exponent +2 larger
than the non-summed time series. As discussed in
[14], this can be generalized for all self-affine pro-
cesses: summing a self-affine time series shifts the
theoretical power-spectral density exponent by +2,
and the reverse process is also true: the differences
in consecutive values (the “first differences”) of a
Brownian motion result in white noise, thus tak-
ing the first differences shifts the theoretical power-
spectral density exponent β by −2. In our case, the
exponent obtained for the time series of successive
increments I(n) was γ = 0.9. Thus, the exponent
of the raw data is β = γ − 2 = −1.1 [14]. For com-
parison, the spectral densities of the actual signal
and of a surrogate obtained after randomly shuf-
fling the increments are jointly displayed in Panel
D of Fig. 1.

To further study the time series from the perspec-
tive of individual bursts of activity, we introduce
the definition of an event. We consider the time
series of activity x(n) and select a threshold value
U to be vanishingly small. An event is defined by
the consecutive points starting when x(n) > U and
ending when x(n) < U . This is equivalent to the
definition of avalanches in other contexts [9,15]. In
the following part, we will be concerned primarily
with the statistics of event lifetimes T , as well as of
their average size S and shape. In all subjects, we
found that the distributions of event durations and
sizes (defined by the area, i.e., the integral of the
signal corresponding to the individual events) can
be well described, for relatively small values, by a
power-law (Fig. 2, Panel A). In contrast, the dis-
tribution of waiting times between events demon-
strated an exponential decay. In addition to the
scale invariance, we found that the longer an event
lasted, the stronger the motor activity executed by
the subject. The plot of average event size 〈S〉 as
a function of duration T follows a power-law (for
small values of T ) described by 〈S〉(T ) = Tµ+1 with
µ+ 1 = 1.59. The exponents in this power-law are
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Figure 3: Collapse of events of different duration
into a single functional form. Panel A: Three ex-
amples of typical events of duration T=480, 960
and 1920 sec.. Panel B: The heterogeneous events
shown in Panel A can be collapsed onto the av-
erage shape (dashed black line) by normalizing t
to t/T and 〈x(t)〉 to 〈x(t)〉/Tµ. The inset shows
the cumulative variance for a range of µ. Panel
C: The average event shape, i.e., fshape(t/T ), re-
covered from six data sets (thin lines). The best
fit using an inverted parabola is shown as a red
dashed line (µ = 0.49) as well as the one expected
from the critical exponent µ = 0.59 as a dot-dashed
blue line.

robust across subjects and to changes of threshold
over a reasonable range of values.

This type of scaling is well known in the statisti-
cal mechanics of critical phenomena [15]. Examples

range from earthquakes [16] to active transport pro-
cesses in cells [17], crackling noise [11], the statis-
tics of Barkhausen noise in permalloy thin films [10]
and plastic deformation of metals [18]. In all these
cases, the distributions obey universal functional
forms:

f(S) ∼ S−τ , (1)

f(T ) ∼ T−α, (2)

〈S〉(T ) ∼ T 1/σνz, (3)

where f denotes the probability density functions
of the size of the event S and its duration T , and
〈S〉(T ) is the expected size for a given duration.
The parameters τ , α and 1/σνz are the critical ex-
ponents of the system and are expected to be inde-
pendent of the details, being related to each other
by the scaling relation:

α− 1

τ − 1
=

1

σνz
. (4)

We found that the empirical exponents very
closely fulfill the expression above. Using the fitting
approach introduced by Clauset [19] in the scaling
regions depicted in Panel A of Fig. 2, we found
τ = 1.44 and α = 1.70 . Thus, from Eq. (4) a
value of 1/σνz = µ + 1 = 1.59 is expected. The
experimental data points are very close to this the-
oretical expectation (dashed line), especially for the
relatively small T values within the scaling region of
Panel A (where a linear fit estimates µ+ 1 = 1.61),
while those for relatively larger T values (corre-
sponding to the cutoff of the distributions) are a
bit apart, probably due to undersampling. After
repeating this analysis for all subjects in our sam-
ple, the average exponents were all within 5% of
the reported values.

From scaling arguments, it is expected that the
average shape of an event of duration T 〈x(T, t)〉
scales as :

〈x(T, t)〉 = Tµfshape(t/T ). (5)

Thus, the shapes of events of different durations
T rescaled by µ should collapse on a single scaling
function given by fshape(t/T ). Note that µ corre-
sponds in this context to the wandering exponent
(i.e., the mean squared displacement) of the activ-
ity [13,20].

Examples of this collapse are presented in Pan-
els A and B of Fig. 3. Considering the number of
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Figure 4: Scaling is absent in a null model result-
ing from defining events after randomly reordering
the time series x(n). Panel A: Density distribu-
tions (CCDF) for event duration, size, and waiting
time. All the distributions are exponential (note
the logarithmic-linear scale). Panel B: The ex-
pected average size for a given duration in the null
model is a linear function of T (the dashed line rep-
resents the fit with slope 1), therefore, µ = 0 and
there is no collapse.

events here averaged (in the order of N ∼ 102), the
data collapse is quite satisfactory, while the value of
the exponent (µ = 0.48) does not exactly match the
one predicted in Eq. (4), µ = 0.59 (likely a conse-
quence of insufficient sampling). To determine the
generality of our results, we extended this analy-
sis to six other data sets. For each data set, the
value of µ was first determined. Subsequently, the
x(T, t) obtained from the events were rescaled with
Tµ and their average computed. To account for
individual differences in mean activity, shape func-
tions were normalized by their mean value. The
results for the six datasets are presented in Panel
C of Fig. 3. They can be accurately described by

an inverted parabola, as in other systems previously
studied using this method. The best fit disagrees
with the empirical functions near their peak, the
latter being flatter, likely an effect related to satu-
ration observed in long events.

Finally, we turn to discuss simple null models.
We consider two extreme cases, in both of them
the raw time series are randomly shuffled to remove
serial correlations. In the first case, we remove all
temporal correlations by randomly reordering x(n),
thus attaining a flat power spectral density. After
repeating the above analysis in this surrogate data
set, it becomes clear (as shown in Fig. 4) that the
scale invariance is absent in all the statistics un-
der study: size S, waiting time Wt and duration
T of events (note that the distributions are here
plotted using a logarithmic-linear scale). Results
in Panel B show that µ+ 1 = 1, thus µ = 0, imply-
ing that there is not collapse, because with Tµ = 1
in Eq. (5), the amplitude of the individual events
remains invariable. To consider the second case,
we need first to reorder randomly the time series of
increments I(n) and then proceed to integrate the
increments. Since each increment is now a random
variable, the power spectral density for this surro-
gate process obeys fβ with β = −2 , and as shown
analytically by Baldassari et al. [13], for this case
µ = 1/2 and the scaling function is a semicircle.
Please note that the fluctuations of human activity
described here differ from a simple auto-regressive
process: indeed successive increments I(n) are anti-
correlated and the power spectral density corre-
sponds to non-trivial power law correlations (i.e.,
β 6= −2).

IV. Discussion

The present findings can be summarized by six styl-
ized facts describing bursts of human activity: I)
the spectral density of the time series of activity
x(t) obeys a power law, with exponent β ∼ 1;
II) successive increments I(n) are anti-correlated
with a spectral density obeying a power law with
exponent γ ∼ 1, which corresponds to a spec-
tral density for the raw data fβ with β ∼ −1;
III) the PDF of the increments I(n) is definitely
non-gaussian; IV) the PDF of duration and sizes
of events obeys truncated power laws with expo-
nents 1 < τ < 2 and 1 < α < 2; V) the aver-
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age size of the events scales with its lifetime T as
〈S〉(T ) ∼ Tµ, where µ + 1 = (α − 1)/(τ − 1); VI)
the time series of individual events can be appropri-
ately rescaled via a transformation of its duration T
and amplitude x(t) onto a unique functional shape:
〈x(T, t)〉 = Tµfshape(t/T ).

We are aware that these observations are novel
only for human activity, because similar statistical
regularities of avalanching activity are well known
for a large variety of inanimate systems [9–12]. The
rescaling of the average shape is not surprising be-
cause, placed in the appropriate context, it can be
traced back to Mandelbrot’s study of the fractal
properties of self-affine functions [21]. A curve or
a time series are said to be self-affine if a transfor-
mation can be found, such that rescaling their x, y
coordinates by k and kµ, respectively, and the vari-
ance in y is preserved (with µ = 1 corresponding
to self-similarity). In that sense, the successful col-
lapse of the events shape is a trivial consequence of
the overall self-affinity of the x(t) time series.

Thus, it is clear that the existence of the scal-
ing uncovered here is not informative per se of the
type of mechanism behind: scale-invariance can be
constructed via different processes, ranging from
critical phenomena [15] to simple stochastic auto-
regressive dynamics [13, 20]. What is then the
mechanism by which the above six facts are gen-
erated?

It seems that this question cannot be easily an-
swered by the type of experiments reported here.
Fluctuations of this type could have either an in-
trinsic (i.e., brain-born) origin but also could be
the reflection of a collective phenomena (including
humans and its environment). In either case, the
correlations observed seem to reject the case of in-
dependent random events starting and stopping hu-
man actions, because neither the distribution of the
increments I(n), nor the exponents match the case
of a random walk. In terms of brain-born process,
it is hard to accept some of the implications of the
scaling function in the activity shape. The average
parabolic shape means that the very beginning of
the motion activity contains information about how
long the activity will last, in the same sense that the
initial trajectory of a projectile predicts when and
where it will land. This proposal is hardly realistic,
because there is hardly a reasonable physiological
argument in support of any motor planning for the
length of time we are observing (∼ 103 secs). In

terms of collective processes, the results here sug-
gest that the interaction with other humans could
determine when and where, on the average, we start
and stop moving.

Despite our current relative ignorance, a possi-
bility that sounds interesting is to determine in
children, as they grow, if their behavioral product
of parental (and otherwise) education are reflected
in the shape of their individual scaling function.
This seems reasonable given the fact that “tireless
running around” is almost a definition of early age
well-being, which gives way to less hectic activity
as children mature. In the same line of thoughts,
if changes in the scaling function can be quantita-
tively traced to behavioral changes, one could also
consider to explore applications of these techniques
to monitor eventual progress in the treatment of
hyperactivity disturbances such as in the subjects
affected by the Attention Deficit Hyperactivity Dis-
order syndrome. The converse, i.e., cases in which
the average activity diminish, as in elderly subjects
shall be also explored. Further experiments and
analysis should shed light on these possibilities. In,
the meantime, the present results provide a guide
and six important constraints for the models that
should best capture the physics (and biology) of the
process.
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