[1] R P Feynman, There's plenty of room at the bottom, Caltech's Engineering & Science Magazine, Pasadena (1960).

[2] R D Astumian, Making molecules into motors. Sci. Am. 285, 57 (2001).

[3] P Reimann, Brownian motors: noisy transport far from equilibrium, Phys. Rep. 361, 57 (2002).

[4] P Reimann, P Hanggi, Introduction to the physics of Brownian motors, Appl. Phys. A: Mater. Sci. Process. 75, 169 (2002).

[5] R D Astumian, P Hanggi, Brownian motors, Phys. Today 55, 33 (2002).

[6] J M R Parrondo, B J de Cisneros, Energetics of Brownian motors: a review, Appl. Phys. A 75, 179 (2002).

[7] P Hanggi, F Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81, 387 (2009).

[8] F Julicher, A Ajdari, J Prost, Modeling Molecular Motors, Rev. Mod. Phys. 69, 1269 (1997).

[9] M Schliwa, G Woehlke, Molecular motors, Nature 422, 759 (2003).

[10] W R Browne, B L Feringa, Making molecular machines work, Nature Nanotech. 1, 25 (2006).

[11] M von Delius, D A Leigh, Walking molecules, Chem. Soc. Rev. 40, 3656 (2011).

[12] D Chowdhury, Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist's perspective, Phys. Rep. 529, 1 (2013).

[13] L Mahadevan, P Matsudaira, Motility powered by supramolecular springs and ratchets, Science 288, 95 (2000).

[14] S Denisov, S Flach, P Hanggi, Tunable transport with broken space-time symmetries, Phys. Rep. 538, 77 (2014).

[15] R P Feynman, R B Leighton, M Sands, The Feynman Lectures on Physics, Addison-Wesley, MA (1966).

[16] M R von Smoluchowski, Experimentell nachweisbare der ublichen Thermodynamik widersprechende Molekular-phanomene, Physik. Zeitschr. 13, 1069 (1912).

[17] J M R Parrondo, P Espanol, Criticism of Feynman's analysis of the ratchet as an engine, Am. J. Phys. 64, 1125 (1996).

[18] R D Astumian, M Bier, Fluctuation driven ratchets: Molecular motors, Phys. Rev. Lett. 72, 1766 (1994).

[19] M O Magnasco, Forced thermal ratchets, Phys. Rev. Lett. 71, 1477 (1993).

[20] P Reimann, R Bartussek, R Haussler, P Hanggi, Brownian Motors Driven by Temperature Oscillations, Phys. Lett. A 215, 26 (1996).

[21] J D Bao, Directed current of Brownian ratchet randomly circulating between two thermal sources, Physica A 273, 286 (1999).

[22] Z C Tu, Z C Ou-Yang, A molecular motor constructed from a double-walled carbon nanotube driven by temperature variation, J. Phys.: Condens. Matter 16, 1287 (2004).

[23] Z C Tu, X Hu, Molecular motor constructed from a double-walled carbon nanotube driven by axially varying voltage, Phys. Rev. B 72, 033404 (2005).

[24] M van den Broeck, C van den Broeck, Chiral brownian heat pump, Phys. Rev. Lett. 100, 130601 (2008).

[25] M M Millonas, D R Chialvo, Nonequilibrium fluctuation-induced phase transport in Josephson junctions, Phys. Rev. E 53, 2239 (1996).

[26] The straightforward techniques can be found earlier in H. Risken, The Fokker-Planck Equation, Springer-Verlag (2nd Ed.) (1984).

[27] M M Millonas, Self-consistent microscopic theory of fluctuation-induced transport, Phys. Rev. Lett. 74, 10 (1995).

[28] A L R Bug, B J Berne, Shaking-induced transition to a nonequilibrium state, Phys. Rev. Lett. 59, 948 (1987).

[29] A Ajdari, J Prost, Mouvement induit par un potentiel periodique de basse symmetrie: dielectrophorese pulsee, C. R. Acad. Sci. Paris Ser. II 315, 1635 (1992).

[30] A V Arzola, K Volke-Sepulveda, J L Mateos, Experimental Control of Transport and Current Reversals in a Deterministic Optical Rocking Ratchet, Phys. Rev. Lett. 106, 168104 (2011).

[31] D R Chialvo, M M Millonas, Asymmetric unbiased fluctuations are sufficient for the operation of a correlation ratchet, Phys. Lett. A 209, 26 (1995).

[32] M M Millonas, D R Chialvo, Control of voltage-dependent biomolecules via nonequilibrium kinetic focusing, Phys. Rev. Lett. 76, 550 (1996).

[33] M C Mahato, A M Jayannavar, Synchronized first-passages in a double-well system driven by an asymmetric periodic field, Phys. Letters A 209, 21 (1995).

[34] M M Millonas, D A Hanck, Nonequilibrium response spectroscopy and the molecular kinetics of proteins, Phys. Rev. Lett. 80, 401 (1998).

[35] M Kostur, J Luczka, Multiple current reversal in Brownian ratchets, Phys. Rev. E 63, 021101 (2001).

[36] S Savel'ev, F Marchesoni, F Nori, Stochastic transport of interacting particles in periodically driven ratchets, Phys. Rev. E 70, 061107 (2004).

[37] Baoquan Ai, Liqiu Wang, Lianggang Liu, Transport reversal in a thermal ratchet, Phys. Rev. E 72, 031101 (2005).

[38] I Derenyi, P Tegzes, T Vicsek, Collective transport in locally asymmetric periodic structures, Chaos 8, 657 (1998).

[39] D E Shalom, H Pastoriza, Vortex motion rectification in Josephson junction arrays with a ratchet potential, Phys. Rev. Lett. 94, 177001 (2005).

[40] V I Marconi, Rocking ratchets in two-dimensional Josephson networks: collective effects and current reversal, Phys. Rev. Lett. 98, 047006 (2007).

[41] C Kettner, P Reimann, P Hanggi, F Muller, Drift ratchet, Phys. Rev. E 61, 312 (2000).

[42] S Matthias, F Muller, Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets, Nature (London) 424, 53 (2003).

[43] K Mathwig, F Muller, U Gosele, Particle transport in asymmetrically modulated pores, New J. of Phys. 13, 033038 (2011).

[44] C Marquet, A Buguin, L Talini, P Silberzan, Rectified motion of colloids in asymmetrically structured channels, Phys. Rev. Lett. 88, 168301 (2002).

[45] D Reguera, A Luque, P S Burada, G Schmid, J M Rubi, P Hanggi, Entropic splitter for particle separation, Phys. Rev. Lett. 108, 020604 (2012).

[46] J H Jacobs, Diffusion processes, p. 68, Springer, New York, (1967).

[47] R Zwanzig, Diffusion past an entropy barrier, J. Phys. Chem. 96, 3926 (1992).

[48] G P Suarez, M Hoyuelos, H Martin, Transport in a chain of asymmetric cavities: Effects of the concentration with hard-core interaction, Phys. Rev. E 88, 052136 (2013).

[49] G P Suarez, M Hoyuelos, H Martin, Transport of interacting particles in a chain of cavities: Description through a modified Fick-Jacobs equation, Phys. Rev. E 91, 012135 (2015).

[50] T D Frank, Nonlinear Fokker-Planck equations, p. 280, Springer, Berlin (2005).

[51] C A Kruelle, A Gotzendorfer, R Grochowski, I Rehberg, M Rouijaa, P Walzel, Granular flow and pattern formation on a vibratory conveyor, In Traffic and Granular Flow '05, Eds. A Schadschneider, T Poschel, R Kuhne, M Schreckenberg, D. E. Wolf, Pag. 111, Springer-Verlag, Berlin, Heidelberg (2007).

[52] E M Sloot, N P Kruyt, Theoretical and experimental study of the transport of granular materials by inclined vibratory conveyors, Powder Technology 87, 203 (1996).

[53] Z Farkas, P Tegzes, A Vukics, T Vicsek, Transitions in the horizontal transport of vertically vibrated granular layers, Phys. Rev. E 60, 7022 (1999).