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Ergodic–nonergodic transition in tapped granular systems:
The role of persistent contacts

Paula A. Gago,1–3 Diego Maza,4 Luis A. Pugnaloni1,2∗

Static granular packs have been studied in the last three decades in the frame of a modified
equilibrium statistical mechanics that assumes ergodicity as a basic postulate. The canon-
ical example on which this framework is tested consists in the series of static configurations
visited by a granular column subjected to taps. By analyzing the response of a realistic
model of grains, we demonstrate that volume and stress variables visit different regions of
the phase space at low tap intensities in different realizations of the experiment. We show
that the tap intensity beyond which sampling by tapping becomes ergodic coincides with
the forcing necessary to break all particle–particle contacts during each tap. These results
imply that the well-known “reversible” branch of tapped granular columns is only valid at
relatively high tap intensities.

I. Introduction

Granular matter is ubiquitous in nature. How-
ever, due to the complexity of the real particle–
particle interactions, the standard approaches of
continuum mechanics and thermodynamics are still
limited in providing meaningful descriptions of the
states in which these systems can be. Edwards and
Oakeshot introduced a tentative approach inspired
by the ideas of equilibrium statistical mechanics to
formally describe the global properties of a static
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tad de Ciencias, Universidad de Navarra, Navarra, Spain.

granular pack. Since the introduction of this the-
ory —where the entropy of the systems is governed
by the spatial disorder of the grains [1]—, a num-
ber of studies have used it to frame the interpre-
tation of the results of specific experiments. The
most relevant case is the so-called “Chicago exper-
iment”, where a column of grains was repeatedly
tapped following an annealing-type protocol [2, 3].
The main outcome of this experiment is that a sta-
tionary state can be reached, where the mean vol-
ume fraction, φ, is a well defined function of the tap
amplitude, Γ. Others have also obtained seemingly
reproducible states without the need of annealing
[4]. However, it has been shown recently, by sim-
ulation of frictionless grains, that these stationary
states are not necessarily ergodic [5]. At low Γ,
different members of an ensemble of steady-states
prepared with a well defined protocol may sample
a different region of the phase space, as the fluctu-
ations of φ indicate.

In this paper, we demonstrate that not only the
volume but also the force moment tensor, Σ, are
sampled in a non-ergodic fashion and that ergod-
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icity seems to be recovered if all particle–particle
contacts are lost during each tap. This sets a clear
limit to the range of driving forces able to generate
a sequence of configurations for which the Edwards
framework can be applied.

II. Numerical protocol

We simulated using the LAMMPS package [6] a
quasi-two-dimensional cell containing N = 1000
spherical particles of diameter d. The cell is 1.1 d
thick and 27.8 d wide (the granular column is about
35 layers deep) to have a one to one representa-
tion of a previously introduced experimental device
[7,8]. We use a model for soft frictional spheres de-
scribed in Refs. [9, 10]. The normal component,
Fn, of the contact interaction is given by an elas-
tic repulsive force proportional to the overlap of
the interacting spheres and a dissipative term pro-
portional to the normal component of the relative
velocity. The tangential term, Ft, implements an
elastic shear force and a damping force. The shear
force takes into account the cumulated tangential
displacement between the particles while they re-
main in contact. Whenever Ft > µFn (µ is the fric-
tion coefficient), this lower dynamic friction force
is used. In this work we use the same interaction
parameters as in Ref. [11, 12]. The wall–particle
interaction is defined with the same parameters as
the particle–particle force. Tapping is simulated
by imposing an external vertical motion to the cell.
This pulse is a single sinusoidal cycle A sin(ωt). We
fix ω = 2π× 33 Hz and use the tap amplitude A as
control parameter. The tap intensity is character-
ized by Γ = Aω2/g. The mechanical equilibrium
after each tap is deemed achieved if the kinetic en-
ergy of each particle has fallen (in average) below
10−6mgd. Where m is the mass of one particle and
g the acceleration of gravity.

We study 20 independent realizations of a de-
creasing ramp of the tap amplitude. We initially
fill the cell by placing the spheres at random posi-
tions before letting them deposit under the action
of gravity. In each realization, we decrease Γ in
small steps, from Γ = 20.0 down to Γ = 0.8, and
apply 200 taps for each Γ. Note that for Γ < 1.0,
the column of grains does not detach from the base
during a tap. The 200 taps at each value of Γ are
enough to reach a steady-state. We do not observe

any drift of the mean values of φ or Σ after the
initial 100 taps, which we will discard later in our
analysis. Finally, we also study a cyclic anneal-
ing protocol: starting from the final configuration
at Γ = 0.8 for each of the former realizations; the
tap amplitude is cyclically increased and decreased
every 200 taps in the range 0.8 < Γ < 5.5 in or-
der to compare the steady-states reached with an
alternative method.

III. Data analysis

To measure the packing fraction we use the 2D
Voronoi tessellation (implemented in [13]) of the
x–z plane projection of the particle positions, dis-
regarding the third coordinate on the thin direc-
tion of the cell. Then, we associate to each particle
a “local volume” fraction by dividing the particle
area by the corresponding Voronoi area. In order to
avoid boundary effects, we disregard particles closer
than 2d to the lateral walls. Following the rec-
ommendations in Ref. [14], we analyze horizontal
slices of the granular column 15 d thick measured at
approximately the same depth with respect to the
free surface in order to retrieve unbiased results for
the force moment tensor due to the uneven free sur-
face. Averaging over the N particles contained in
the slice of interest, we obtain the volume fraction
of each static configuration. To obtain the steady-
state φ corresponding to a given Γ, we averaged
this quantity over the last 100 configurations ob-
tained for each tap intensity. We also obtain the
force moment tensor σαβi =

∑
c
rαc f

β
c of each parti-

cle in the slice of interest. Here, the sum runs over
all the contacts c of the particle, −→r c is the vector
from the center of the grain to the contact c and−→
f c is the corresponding contact force. We apply
the same averaging protocol used for φ to obtain
the force moment tensor for the configuration and
Σ for the steady-state of a given realization and Γ.

IV. Results

In Fig. 1(a) the ensemble average of the steady-
state φ (i.e., averaged over the 20 independent re-
alizations) is displayed as a function of Γ. The error
bars correspond to the standard deviation over the
20 realizations. As observed by a number of au-
thors, the curve seems to be very well defined with
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Figure 1: Ensemble average of the steady-state
packing fraction φ (a) and trace of the force mo-
ment tensor Tr(Σ) (b) as a function of Γ. The error
bars correspond to the standard deviation over the
20 averaged realizations. The insets show the same
results and two of the 20 independent realizations
(dashed lines) in the low-tap-intensity region. The
error bars on the single realization data correspond
to the estimated standard error of the mean.

independent realizations falling within a very nar-
row range of φ values for any given Γ. In the past,
this led to the conclusion that this was a truly re-
versible process, where lowering or raising Γ would
lead to the same steady-state φ. In the inset of
Fig. 1(a) two of the independent realizations are
shown for the low-tap-intensity region. From this
picture, it is clear that steady-states correspond-
ing to a given Γ can differ from one realization to
another. Notice that in the inset the error bars
for the two isolated realizations correspond to the
standard error of the mean (SEM), which gives an
estimate of the uncertainty of the mean value re-
ported rather than the size of the φ fluctuations.
For these two realizations, although the mean φ
seems to agree within the estimated error for inten-
sities Γ > 1.5, it is clear that they are different for
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Figure 2: φ (a) and Tr(Σ) (b) as a function of the
tap number for two of the 20 independent realiza-
tions at Γ = 0.8. The notched boxes and “vio-
lin” diagrams shown suggest that both realizations
can be hardly considered as representing the same
steady-state.

low Γ. This is consistent with the findings of Pail-
lusson and Frenkel [5] for frictionless spheres under
event-driven simulations. However, in our simula-
tions we are able to extract the stress state of the
system as well as the history of the contacts. These
reveal valuable information, as we discuss below.

In Fig. 1(b), we show the trace Tr(Σ) of Σ aver-
aged over all 20 realizations as a function of Γ. As
before, the error bars indicate the standard devi-
ation over the 20 realizations. As we can see, the
variability of the mean stress is significantly large
at low Γ. This is not due to the large fluctuations
during a given series of taps but to the variations
observed from one realization of the protocol to the
other. Indeed, the inset in Fig. 1(b) shows that, for
low Γ, the mean values of Tr(Σ) for two of the 20
realizations have a relatively small SEM (i.e., the
fluctuations in each realization are small). How-
ever, realizations differ from each other. The dif-
ference between results corresponding to different
realizations become much more evident here than
in the case of the φ–Γ plot. We suggest that the
stress tensor may be more sensitive and then more
suitable to sense if ergodicity is fulfilled in exper-
imental data. Overall, as Γ is decreased, differ-
ent realizations explore non-overlapping ranges of
volume/stress. Therefore, temporal averages (on
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Figure 3: Steady-state φ (a) and Tr(Σ) (b) as a
function of Γ corresponding to a full annealing pro-
tocol. Starting from the filled circles (red) increas-
ing ramp, and following by filled squares (blue),
open circles (green) and open squares (magenta).
The error bars correspond to the estimated SEM.

a single time series) do not match with ensemble
averages (over the realizations).

Since the number of taps we have explored for
each Γ may be small to assume that the steady-
state has been properly sampled, we carried out
2000 additional taps at Γ = 0.8 for each realiza-
tion. Since some of the signals are not normally
distributed, we confirmed the stationarity of these
states by using a non-parametric test at a level of
significance of 5% [15, 16]. Two of the normally
distributed realizations are displayed in Fig. 2 as a
function of the tap number. Comparing the cor-
responding notched boxes and “violin” diagrams
of both signals, it is clear that the states do not
match. Hence, the reversible branch found in Ref.
[3] is not so at low Γ in our case since truly station-
ary states with distinguishable φ and Tr(Σ) may be
obtained on different realizations of the annealing
protocol. Of course, this is harder to detect in φ
since the dispersion between realizations is much
smaller compared with the range of φ values ob-
tained at different Γ.

The former results also confirm the hypothesis
that non-ergodicity is present in a typical tapping
protocol beyond the special case reported in Ref.
[5], where the steady-states obtained did not follow
any annealing-type protocol. Hence, we observe
this non-ergodic behavior even after annealing the
system from high tapping strengths. To stress this
point and assess if the speed of the annealing may
prevent the system from reaching a unique steady-
state on each realization, we apply a slower cyclic
annealing protocol (similar to the one introduced in
[2]) to each of the 20 final states at low Γ in order
to reproduce the “reversible branch”. In Fig. 3 we
display a sequence of two successive up and down
ramps applied to one of the 20 initial realizations
using Γ-steps about one half of those used in Fig.
1. Although in the scale used for φ the steady-state
packing fraction seems reversible, a close inspection
shows that the states have distinguishable φ at low
Γ [see Fig. 3(a) and the corresponding inset]. This
is much more evident when the stress is analyzed
[see Fig. 3(b)].

In order to set a criterion to decide if the steady-
states are not ergodic for a given Γ, we show in Fig.
4 the p-values for the Kruskal–Wallis [17] one-way
analysis of variance performed on the 20 realiza-
tions at each Γ. This simple non-parametric test
allows for the rejection of the null hypothesis that
all 20 data series are drawn from a unique distri-
bution (which does not need to be normal), hence
that they correspond to a unique steady-state. If
the p-value is significant (in our case p > 0.01),
then we cannot rule out the possibility that the 20
series come from the same steady-state. As we can
see from Fig. 4(a), the test run on the data for
φ indicates that for Γ < 5.0, the null hypothesis
must be rejected and therefore there exist at least
two out of the 20 steady-states that are not the
same. However, for higher Γ, the test is significant
and then the 20 realizations may correspond to the
same steady-state. Interestingly, when the test is
run on Σ [see Fig. 4(b)], the steady-state seems to
be unique for all 20 realizations if Γ > 3.75. Al-
though differences between realizations are simpler
to detect on visual inspection of Tr(Σ), it is actu-
ally φ that sets a higher threshold for the Γ val-
ues needed to ensure an ergodic steady-state (i.e.,
Γ > 5.0).

The previous results indicate that the steady-
states sampled at low tap intensities do not only
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Figure 4: P-value (up-triangles, right axis) as a
function of Γ for the Kruskal–Wallis [17] one-way
analysis of variance for φ (a) and Tr(Σ) (b). The
horizontal dotted line corresponds to the signifi-
cance level used (1%). The black circles correspond
to the φ and Tr(Σ) data from Fig. 1.
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Figure 5: (a) Percentage C/C0 × 100 of persistent
contacts (black circles) as a function of Γ, averaged
over 5 taps on 6 independent realizations. The er-
ror bars correspond to the standard deviation over
the 6 realizations. Up-triangles (green) correspond
to the p-values in Fig. 4 for φ and down-triangles
(magenta) to Tr(Σ). (b) Same as (a) for frictionless
grains.

depend on Γ but on the particular history of each
realization. Notice that this goes beyond the his-

tory dependent out-of-equilibrium trajectories al-
ready reported in tapped systems [18] since here we
are focusing on the steady-states. One may hypoth-
esize that the constraints imposed by the contacts
is one of the reasons for the non-ergodic behavior
at low tap. If a contact persists from one tap to
the next, the contact force after coming back to
rest will depend on the history of all contacts of
that particular grain. In order to test this idea, we
analyze the evolution of all contacts during each
tap and identify those that persist (i.e., contacts
that did not break at any time during the pulse of
energy). Figure 5 shows the average ratio C/C0

of persistent contacts, C, to the total number of
contacts, C0, as a function of Γ. For this calcu-
lation, each contact was tracked during the final
5 taps for each Γ on 6 of the independent realiza-
tions and only grains that fall within the layer of
interest, as discussed above, where included in the
analysis. The percentage of persistent contacts is
very small but non-zero up to Γ ≈ 5.0. As it is
expected, when Γ is increased sufficiently all the
contacts are broken and new ones are made during
each tap (resulting in C/C0 = 0). This transition
coincides with the value of Γ where the realizations
seem to sample the same steady-state (see the p-
values included in Fig. 5). Therefore, when small
taps are applied, the aging of some of the contacts
seem to lead the system to sample different regions
of the phase space during independent realizations.
However, if all contacts are made anew at each tap,
the sampling becomes compatible with the idea of
ergodicity introduced in Fig. 4. In order to general-
ize this result, we also simulated frictionless grains.
Interestingly, the same conclusion drawn for fric-
tional grains is true for frictionless ones: different
realizations seem to sample the same steady-state
only if all contacts are made anew upon each tap
[see Fig. 5 (b)].

V. Conclusions

Our analysis of the steady-states of tapped granu-
lar systems indicate that these states are history-
dependent for tap intensities below a certain
threshold. This is in contradiction with the general
assumption that macroscopic time averages —such
as the volume fraction— can be recovered when
the amplitude of the perturbation applied to the
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system is tuned back and forth. The differences
between independent realizations become particu-
larly noticeable in the stress distribution. These
findings show that the postulates of the equilib-
rium statistical thermodynamics may not be al-
ways fulfilled to describe the steady state of static
granular systems (see also Ref. [19] for a discus-
sion on the Boltzmann distribution failure for an
analytically solvable model). Focusing on tap in-
tensities that warrant that all contacts are made
anew after each tap may allow exploring the avail-
able phase space in agreement with the ergodic hy-
pothesis. However, gentle perturbations deserve an
approach that includes memory effects to suitably
describe the states. In that sense, non-equilibrium
thermodynamic approaches may be a suitable al-
ternative [20]. Further research on such alterna-
tive formalisms, the effect of other types of forcing
mechanisms (e.g., shear), and possible extensions
to other complex systems (e.g., active matter) be-
come necessary.
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