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Bayesian regression of piecewise homogeneous Poisson processes

Diego J. R. Sevilla1∗

In this paper, a Bayesian method for piecewise regression is adapted to handle counting
processes data distributed as Poisson. A numerical code in Mathematica is developed and
tested analyzing simulated data. The resulting method is valuable for detecting breaking
points in the count rate of time series for Poisson processes.

I. Introduction

Bayesian statistics have revolutionized data anal-
ysis [1]. Techniques like the Generalized Lomb-
Scargle Periodogram [2] allow us to obtain oscilla-
tion frequencies of time series with unprecedented
accuracy. The Gregory and Loredo method [3] goes
further allowing us to find and characterize periodic
signals of any period and shape.

To detect non-periodical variations, the Ex-
act Bayesian Regression of Piecewise Constant
Functions by Marcus Hutter (hereafter Hutter’s
method) [4] is valuable. It permits to estimate
the most probable partition of a data set in seg-
ments of constant signals, determining the num-
ber of segments and their borders, and in-segments
means and variances. Hutter’s method works
with two continuous distributions: Normal, and
Cauchy-Lorentz. The latter —the canonical ex-
ample of a pathological distribution with unde-
fined moments—, is also suitable to analyze data
with other symmetric probability distributions, es-
pecially with heavy tails.

In the case of counting processes, especially for
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y Agrimensura. Universidad Nacional de Rosario, Av.
Pellegrini 250, S2000BTP Rosario, Argentina.

low rates, when data consist in non-negative small
integers, methods specially designed to discrete
probability distributions are necessary. Some re-
gression methods, specially for non-homogeneous
Poisson processes [5], were developed.

In this paper, Hutter’s method is adapted for an-
alyzing data distributed as Poisson. The results are
summarized in a code in Mathematica [6]. It can be
used to analyze data of several physical processes
which follow the Poisson distribution (e.g., detec-
tion of photons in X-ray Astronomy, particles in
nuclear disintegration, etc.), if sudden changes in
detection rates are suspected.

II. Method

Hutter’s method is summarized in Table 1 of Ref.
[4] in a pseudo C code which is divided in two
blocks. The first one calculates moments Ak

ij with
k = 0, 1, 2 of the PDF of the statistical models for
segments of data Dij := {ni+1, . . . , nj}. The sec-
ond one performs the regression from moments Ak

ij .
The code developed in this work is divided in three
blocks.

As the members of the Poisson distributions fam-
ily are identified by one parameter -the mean rate
r of the Poisson process-, the PDF of the models
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for a segment Dij is [1]

P (r|Dij , I) =
P (r|I)P (Dij |r)

P (Dij)
, (1)

where P (r|I) is the prior of parameter r, P (Dij |r)
is the likelihood of segment Dij for a given r,
P (Dij) is the global likelihood of the family, and
I represents a prior information.

Usually, the prior information consists of global
quantities calculated from D := D0N , i.e., from
all the data set. For Poisson processes, only one
quantity is necessary: the mean rate r̂. Considering
the conjugate prior of the Poisson distribution [7],
the prior results

P (r|r̂) =
rr̂−1 e−r

Γ(r̂)
. (2)

For a Poisson process with rate r, the likelihood
of a segment Dij is

P (Dij |r) =

j∏
t=i+1

rnt e−r

nt!
. (3)

So, the moments of the posterior can be ex-
pressed in an analytical form

Ak
ij =

Γ(k + r̂ +
∑j

t=i+1 nt)
∏j

t=i+1
1
nt!

Γ(r̂) (j − i+ 1)k+r̂+
∑j

t=i+1 nt

. (4)

Code block 1 calculates Ak
ij . It needs as input the

time series to be analyzed (list data). The output
are functions A0[i,j], A1[i,j] and A2[i,j] and
integer n, which is the length of data.

Code block 1: Mathematica code to calculate Ak
ij .

n=Length[data];
r=Mean[data];
Do[

Do[
d=j-i; m=r+Sum[data[[t]],{t,i+1,j}];
A0[i,j]=(m -1)!/( Gamma[r]*(d+1)^m)*

Product [1/ data[[t]]!,{t,i+1,j}];
A1[i,j]=m*A0[i,j]/(d+1);
A2[i,j]=(m+1)*A1[i,j]/(d+1);

,{j,i+1,n}];
,{i,0,n}];

As the second block of Hutter’s code only needs
the moments Ak

ij as inputs, it could work properly
with no changes. It computes the evidence, the
probability for k segments and its MAP estimation
k̂, the probability of boundaries locations and the

MAP locations of the k̂ boundaries, the first and
second in-segment moments, and an interesting re-
gression curve that smooths the final result.

Nevertheless, for our specific problem, once the
segments boundaries are obtained, we can estimate
their means and variances straightforwardly, so we
only use a part of Hutter’s second block, which
is shown in code block 2. The logical of the al-
gorithm is explained in Ref. [4]. Code block 2
needs as inputs A0[i,j], A1[i,j], A2[i,j] and
n, all calculated in code block 1, and integer kmax,
which is the maximum number of segments to be
considered. The outputs are the evidence (e), the
probability for k segments (c[k]), its MAP (khat),
the probability of boundaries locations (B[i]), and
their MAP (that[p]).

Code block 2: Mathematica code to calculate
breaking points.

Do[
L[0,i]= KroneckerDelta[i,0];
R[0,i]= KroneckerDelta[i,n];

,{i,0,n}];
Do[

Do[
L[k+1,i]=Sum[L[k,h]*A0[h,i],{h,k,i-1}];
R[k+1,i]=Sum[R[k,h]*A0[i,h],{h,i+1,n-k}];

,{i,0,n}]
,{k,0,kmax -1}];
e=1/ kmax*Sum[L[k,n]/ Binomial[n-1,k-1],{k,1,kmax }];
Do[

c[k]=L[k,n]/( Binomial[n-1,k-1]* kmax*e)
,{k,1,kmax }];
khat =1;
Do[If[c[khat]<c[k],khat=k];,{k,0,kmax }];
Do[B[i]=

Sum[L[p,i]*R[khat -p,i]/L[khat ,n],{p,0,khat }];
,{i,0,n}];
Do[

that[p]=0;
dummy=L[p,0]*R[khat -p,0];
Do[

If[dummy <L[p,h]*R[khat -p,h],
that[p]=h;
dummy=L[p,h]*R[khat -p,h];

];
,{h,1,n}];

,{p,0,khat }];

Finally, we calculate the in-segments means and
estimate their statistical errors. If one segment of
m elements has n counts, its mean rate is n/m, and
its variance is approximately n/m2.

To determine the accuracy of the fit, it is also use-
ful to estimate the uncertainties of the boundaries
locations. A reasonable estimation of the uncer-
tainties can be obtained from the second moments
of the probability distributions of boundaries loca-
tions in the neighborhoods of the breaking points.
If the probabilities of the boundaries locations are
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given by function B(k), the uncertainties approxi-
mately result

εk̂ =

√√√√√∑k̂+a

k=k̂−a+1
B(k) (k − k̂)2∑k̂−a

k=k̂−a+1
B(k)

, (5)

where a is large enough to consider all the width of
the peak corresponding to boundary k̂, but small
enough to avoid including peaks of other bound-
aries. In practice, if ̂, k̂ and l̂ are the positions of
consecutive boundaries, a good value for a is the
minimum of (k̂ − ̂)/2 and (l̂ − k̂)/2.

Code block 3 uses these approaches to calculate
the constant piecewise regression of data, and to
estimate its statistical errors. The inputs are c[k],
khat, B[i] and that. The outputs are list reg,
which represents the best fit, and lists re1 and re2,
which represent the minimum and maximum esti-
mations considering the statistical errors of reg.

Code block 3: Mathematica code to calculate re-
gression.

TBP=DeleteDuplicates[Table[that[k],{k,0,khat }]];
NBP=Length[TBP]-1;
Do[BP[k]=TBP[[k+1]]; ,{k,0,NBP}];
ethat [0]=0; ethat[NBP ]=0;
Do[

l1=IntegerPart [(BP[k-1]+BP[k])/2]+1;
l2=IntegerPart [(BP[k+1]+BP[k])/2];
ethat[k]=

Round[Sqrt[Sum[(j-BP[k])^2*B[j],{j,l1 ,l2}]/
Sum[B[j],{j,l1 ,l2 }]]];

,{k,1,NBP -1}];
Do[

mm[k]=BP[k]-BP[k-1];
nn[k]=Sum[data[[i]],{i,BP[k-1]+1 ,BP[k]}];

,{k,1,NBP}];
reg=Flatten[Table[Table[nn[k]/mm[k]

,{BP[k]-BP[k-1]}] ,{k,1,NBP }]];
BP1 [0]= BP2 [0]=BP[0]; BP1[NBP]=BP2[NBP]=BP[NBP];
Do[

s=If[reg[[BP[k]+1]] >reg[[BP[k]]],1,-1];
BP1[k]=BP[k]+s*ethat[k];
BP2[k]=BP[k]-s*ethat[k];

,{k,1,NBP -1}];
re1=Flatten[Table[Table[(nn[k]-Sqrt[nn[k]])/mm[k]

,{BP1[k]-BP1[k-1]}] ,{k,1,NBP }]];
re2=Flatten[Table[Table[(nn[k]+Sqrt[nn[k]])/mm[k]

,{BP2[k]-BP2[k-1]}] ,{k,1,NBP }]];

III. Applications and Discussion

Figure 1 (top) shows, in blue dots, data simulated
using Mathematica. Data consist of 150 Poisson
distributed elements, the first 50 with rate 1.5, the
second 50 with rate 0.5, and the last 50 with rate
1.0. Applying the first 2 blocks of code on data,
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Figure 1: Top: Simulated data (blue dots) and
boundaries location probability (red line). Bottom:
Regression curve and its error estimation (black
dashed line and gray zone), and the rate curve used
in simulation (blue line).

we can see that the probability of having 2 break-
ing points is very high. Figure 1 (top) also shows,
in red line, the probability for the boundaries loca-
tions. Applying code block 3, we obtain the regres-
sion [Fig. 1 (bottom), black dashed curve] and its
error estimation [Fig. 1 (bottom), gray zone]. The
continuous blue line in Fig. 1 (bottom) indicates
the rates used in simulation.

The regression in the example above fits very
well with the rate curve used in simulation. But
sometimes regressions result qualitatively different
to the rate curve, showing more or less breaking
points, even for data simulated in the same con-
ditions. This effect is due to chance. To show
this issue, 2000 simulations with the same condi-
tions were performed. In 992 of them, two break-
ing points were found. In the others, there were
found zero (44), one (208), three (419), four (155),
five (73), six (41), and seven or more (68) breaking
points. For cases in which two breaking points were
found, statistics of the most likely boundaries loca-
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Figure 2: Top: Histogram of the boundaries loca-
tions. Bottom: Histogram of the in-segment mean
rates. Both figures were calculated for a set of 2000
simulations similar to that shown in Fig. 1.

tions and in-segment mean rates were calculated.
Figure 2 shows histograms of those statistics.

Figure 2 (top) shows histograms for boundaries
locations. It is clear that the bigger the step, the
smaller the uncertainty on its location. Figure 2
(bottom) shows histograms of in-segment rates. It
is clear that the greater the rate, the smaller its
relative statistical error.

Figure 3 shows data and boundaries location
probabilities for a simulation similar to the pre-
vious ones, but now with rates 3.0, 1.0 and 2.0.
Comparing Fig. 1 (top) and Fig. 3 (top), we can
see that in the latter one the boundaries locations
are found more accurately.

Again, 2000 simulations with the same condi-
tions were performed. In 1159 of them, two break-
ing points were found, while in the others, there
were found zero (1), one (33), three (499), four
(167), five (75), six (32), and seven or more (34)
breaking points. Figure 4 shows histograms of the
statistics of the most likely boundaries locations
and in-segment rates for the simulations with two
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Figure 3: Top: Simulated data (blue dots) and
boundaries location probability (red line). Bottom:
Regression curve and its error estimation (black
dashed line and gray zone), and the rate curve used
in simulation (blue line).

breaking points found. Comparing with Fig. 2,
we can see that the histograms are now narrower.
These results confirm what was stated above.

It is important to note that the probability for
the real curve to be completely inside the region
defined by the error estimations of the regression is
significantly less than one. It is easy to see why:
if the errors were independent and equal to the
standard error, the probability of satisfying n er-
ror conditions simultaneously would be 0.68n. But
even the actual probability could be lower, since it
is clear that the errors must be dependent. Nev-
ertheless, the error estimations presented here are
useful to get an idea of the accuracy of the regres-
sion.

Finally, the capability to detect a breaking point
with this code was tested for different count rates.
To do this, simulated data sets of a single step in the
count rate were used. Data sets consist in 100 Pois-
son distributed elements, the first 50 for a rate r1
and the last 50 for a rate r2. 1000 simulations were

070018-4



Papers in Physics, vol. 7, art. 070018 (2015) / D. J. R. Sevilla

Figure 4: Top: Histogram of the boundaries loca-
tions. Bottom: Histogram of the in-segment rates.
Both figures were calculated for a set of 2000 sim-
ulations similar to that shown in Fig. 3.

Table 1: Statistics of successful detections for a sin-
gle step.

r1\ r2 3.0 2.0 1.6 1.2 0.8

0.4 0.86 0.74 0.70 0.63 0.46
0.8 0.77 0.70 0.60 0.36
1.2 0.69 0.61 0.30
1.6 0.65 0.28
2.0 0.60

done for each pair (r1, r2). Statistics of success-
ful detections are presented in Table 1. A success-
ful detection is considered when only one breaking
point between elements 40 and 60 is detected.

Table 1 shows that the smaller is the mean rate
difference and the smaller are the mean rates, the
more difficult is the detection of the step. This
result is expected because in a Poisson distribution
the variance is equal to the mean.

IV. Conclusions

In this work, a code for Bayesian regression of piece-
wise constant functions was adapted to handle data
from Poisson processes. For this purpose, equations
for calculating the moments of the posteriors of seg-
ments of data were found through Bayes theorem,
considering the conjugate prior of the Poisson dis-
tribution as prior. These results, as well as part of
Hutter’s method, were used to calculate the most
probable number of segments and their boundaries.
Procedures for calculating in-segments mean rates
and the uncertainties of mean rates and boundaries
locations are also provided. The resulting method
is summarized in a code in Mathematica.

The code was applied to simulated data. Firstly,
two examples with tree segments were analyzed.
The code performed well in both cases considering
the dispersion of data, and the results improved in
the case of higher mean rates and mean rates dif-
ferences. This occurs because of the statistical dis-
persion of Poisson distributed data, which is greater
than the mean rate if the mean rate is lower than
one.

Finally, simulations of data of a single step were
analyzed for different rates, and statistics of the
regressions with only one breaking point are pre-
sented in a table. This table shows the effect of
the rates and rate differences in the regression ac-
curacy, and, together with the errors estimations
provided by the code, can serve as an indicator of
the reliability of the method.

Supplementary material including the source
code for the algorithms can be found at the journal
website [8].
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