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Knife-bladed vortices in non-Newtonian fluids

E. Freyssingeas,1 D. Frelat,1 Y. Dossmann,1 J.-C. Géminard1∗

A tank is filled with a non-Newtonian fluid. We report on the deformation of the free surface resulting
from the presence of an underlying vortex. In a tiny range of the experimental parameters, the flow
spontaneously loses its initial axi-symmetry, leading to the formation of a stationary knife-bladed
vortex. We report on the series of patterns observed experimentally and summarize the conditions of
the existence of the latter by establishing a state diagram.

I. Introduction

Flows in complex fluids exhibit many intriguing phe-
nomena [1]. Among them, one of the most striking is
the appearance of a cusp at the trailing end of a bub-
ble rising through a non-Newtonian, viscoelastic fluid
[2, 3]. Interestingly, the cusp assumes a knife-edge
shape which is the result of an instability leading to
spontaneous symmetry breaking of the interface. Such
symmetry breaking, which is forbidden in Newtonian
fluids and thus only possible due to the non-Newtonian
properties of the fluid, has also been revealed observing
the deformation of the free surface resulting from the
settling of a solid sphere [4,5]. Symmetry breaking has
also recently been observed in a jet of a visco-elastic
fluid impinging on a wall at right angle [6]. Follow-
ing the same research line, we were seeking for an ex-
perimental situation involving the free surface, making
possible to observe a spontaneous loss of axi-symmetry
in a configuration similar to that in Ref. [4], but in the
steady state. We came to the idea of producing a vortex
in a complex fluid and observing that the free surface
was an adequate and convenient experimental configu-
ration to achieve.
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Conversely to vortices in Newtonian fluids, vortices
in complex fluids, and specially the resulting deforma-
tion of the free surface, have attracted little or no atten-
tion. However, we mention here a recent study of the
formation of vortices in non-Newtonian fluids [7]. One
can notice that, in many practical cases, complex fluids,
such as viscoelastic fluids (e.g., polymers or wormlike
micelles solutions) or yield-stress fluids (e.g., gels or
foams), are set in rotation, leading to the formation of
vortices in the bulk and to the deformation of the free
surface. Our aim is thus to provide a first experimental
study of the deformation of the free surface of a non-
Newtonian fluid and to show that, in a tiny range of
the experimental parameters, one can indeed observe a
spontaneous loss of the flow symmetry (Fig. 1). To do
so, we first characterize the fluids in use and then report
a series of experimental observations; among them, the
state diagrams and some geometrical characteristics of
the observed patterns.

II. Setup and protocol

We aim at characterizing at best, using simple imag-
ing techniques, the deformation of the free surface of a
non-Newtonian fluid due to the presence of an underly-
ing vortex. We first describe the experimental device,
then the fluids under study and finally, the experimental
protocol.
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Figure 1: Asymmetric vortex observed at the free sur-
face of a non-Newtonian fluid. The free surface is
observed from below. One clearly observes that the
vortex lost the initial symmetry and exhibits two tips.
The scalebar is worth 1 cm (Camera 3, Ω = 4.5 Hz,
h = 4 cm, sample 1). Associated movies Fig.1.avi,
Fig.1.c1.avi, Fig.1.c2.avi, and Fig.1.c4.avi can be found
as supplementary material [8].

Figure 2: Sketch of the experimental device. The cam-
eras 2, 3 and 4 are in the same vertical plane, perpen-
dicular to the axis of camera 1. Depending on the ob-
servation angle, either of the two light sources is used.
The horizontal size of the container is 20×20 cm2, and
its depth is 10 cm.

i. Experimental device

The main part of the experimental device (Fig. 2) con-
sists of a square tank (in-plane size 20×20 cm2, depth
10 cm). The side walls are made of glass plates,

whereas the bottom is made of a thick PVC (Polyvinyl
chloride) plate. A cylindrical housing, machined in the
bottom, receives a PVC disc (diameter 10.1 cm) whose
surface is flush with the bottom of the tank. The disk is
driven in rotation by a DC motor fed by a power supply,
so that the rotation velocity can be tuned in the range
from 0 to 6.25 Hz. Flat side walls avoid optical defor-
mations when observing from side. The lateral dimen-
sions of the base have been chosen to ensure that, in our
experimental conditions, the fluid flow never spatially
extends to the lateral walls so that the observed patterns
are not altered by lateral boundary conditions.

Our experiments rely on visual characterization of
the deformation of the free surface. We use 2 CCD cam-
eras (Jai, CB-080; COSMICAR TV Zoom Lens 12.5–
75mm, 1:18) to quantitatively assess geometrical prop-
erties of the free surface. These two cameras (Cam-
era 1 and Camera 2) are set in front and above the tank
respectively, to make it possible to visualize the ver-
tical and in-plane profiles of the free surface. Both
CCD cameras provide accurate images, easy to ana-
lyze. We also use 2 additional cameras (Webcams, Log-
itech Quickcam Pro 9000) to report qualitative observa-
tions. These two webcams (Camera 3 and Camera 4)
are placed one above and the second below the free sur-
face plane. They both point toward the center of the free
surface, making angles of about 30 deg and 20 deg with
the horizontal. Cameras 2, 3 and 4 are all in the same
vertical plane, perpendicular to the axis of Camera 1. In
order to assess the vertical profile from the front view
(Camera 1), the fluid is lit with a parallel, horizontal
white light, which casts the shadow of the free surface
onto a sheet of tracing paper covering the output side
wall. Cameras 2, 3 and 4 are used with light from a sec-
ond white source which provides parallel light, making
a 45-degrees angle with the vertical.

ii. Fluid samples

The yield-stress fluids in use are mixtures of various
concentrations of a commercial hair gel (Styling gel
extra strong fixing, Auchan production, mainly made
up of Carbopol1) and distilled water. The rheological
properties of such mixtures do not allow us to generate

1Carbopol is a family of polymers that are used as thickeners,
suspending agents and stabilizers. They are utilized in a wide vari-
ety of personal care products, pharmaceuticals and household clean-
ers. Most Carbopol polymers are high-molecular-weight acrylic-acid
chains, usually crosslinked. The crosslinked polymers are not actually
water soluble, but swell into hydrated spheres that give the product its
rheological properties.
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Figure 3: Shear viscosity η vs. shear-stress σ (Sam-
ple 3).

vortices in too concentrated mixtures (typically over 50
wt.% in gel). We therefore considered only mixtures
with concentrations in hair gel smaller than 50 wt.%.

To prepare these mixtures, chosen masses of gel and
distilled water are mixed in a large container (1 to 3
liters of fluid are necessary for the experiments), and
then stirred for several minutes. The mixture is then
let to rest at room temperature for at least 12 hours for
good homogenization. Then, to get rid of air bubbles in
the mixture that could prevent correct visualization, the
mixtures are centrifuged at 1100 rpm for 5 minutes.

We used two different batches of hair gel which, al-
though of the same brand, have slightly different rheo-
logical properties. Batch 1 exhibits a yield stress larger
than batch 2. We mainly focused our investigation on
four different mixtures: 45 wt.% and 40 wt.% of gel
from batch 1 and 45 wt.% and 35 wt.% from batch 2
in water. A fifth mixture, 20 wt.% of gel from batch
1 was studied at a single height (4.3 cm). Samples are
numbered and labeled according to Table 1.

We assessed rheological properties of the samples us-
ing a rheometer (Bohlin; C-VOR 150) in plane-plane
geometry (plate diameters: 60 mm) at room tempera-
ture (22◦C). In order to avoid sliding at the walls, sand-
paper was glued on both surfaces. In order to insure re-
liable measurements, we considered two different gaps,
i.e., 1 mm and 0.5 mm, between the plates and checked
that the results were similar for both gaps. We report
averages over 3 measurements.

The viscosity η was obtained by measuring the shear-
rate at constant imposed shear-stress, σ (Fig. 3). One
observes two regimes. For small σ, data are very scat-
tered: the imposed shear stress is below the yield, i.e.,
the torque applied by the rheometer is not enough to
make the fluid flow. In contrast, beyond a threshold
shear stress, σ0, the applied torque induces a contin-
uous flow. The viscous behavior of the flow is dom-
inant. We remark that the measurements do not re-
veal any significant hysteresis upon increasing and de-
creasing shear stress (or equivalently shear rate) in this
regime. Above the yield, the viscosity decreases when
σ is increased, according to η(i) ∝ σ−1.5. We have
η(1) > η(2) > η(3) > η(4) > η(5) (Fig. 4a).
In addition, the storage modulus G′ was obtained by
imposing a periodic shear-stress at 1 Hz and by mea-
suring the resulting shear-strain (Fig. 4b). Again, two
regimes are observed. For small σ, the measurements
exhibit a plateau while, beyond a threshold shear-stress,
the storage modulus G′ decreases when the shear stress
is increased. Note that the values of the yield stress are
very similar to those obtained above, from the measure-
ment of the viscosity. In this regime, G′ ∝ σ−1.5 and
G′(1) > G′(2) > G′(3) > G′(4) > G′(5).
From these two experiments, we assess that all samples

exhibit a well-defined yield stress, σ0 (Table 1). Sam-
ples 1 and 2 have similar rheological behaviors, η(1)
and η(2), G′(1) and G′(2) as well as σ0(1) and σ0(2)
being of the same order of magnitude. Samples 3, 4
and 5 are much less viscous and elastic, with smaller
values of the yield stress than samples 1 and 2.

iii. Experimental protocol

The chosen fluid is poured in the tank and leveled to
a chosen height, h. The central disc is set in rotation.
The rotation velocity, Ω, is increased by steps up to the
maximum rotation velocity of about 6 Hz and, then, de-
creased still by steps until rest. At each step, we record
movies from the various cameras in the steady-state.

III. Experimental results

i. Control experiment in a Newtonian fluid

We first report on a control experiment performed with
a Newtonian fluid (a water/glycerine mixture) to vali-
date the experimental set-up. The free surface exhibits
a parabolic shape and deepens when the rotation veloc-
ity Ω is increased. The maximum depth of the profile,
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Sample# (symbol) 1 (◦) 2 (•) 3 (M) 4 (N) 5 (�)
Batch 1 (%.wt) 45 40 – – 20
Batch 2 (%.wt) – – 45 35 –

σ0 (Pa) 3.5 ± 0.5 2.5 ± 0.3 1.0 ± 0.2 0.8 ± 0.2 0.5 ± 0.1

Table 1: Numbering, labeling, composition and yield stress, σ0 of the fluids in use.

Figure 4: Rheological properties of the samples – (a)
Shear viscosity η and (b) storage modulus G′ vs. shear-
stress σ.

D, increases linearly with Ω2, for limited values of Ω

(Fig. 5). This behavior is in accordance with the predic-
tion for a Newtonian flow in solid body rotation. When
the rotation velocity is further increased, the vertical ex-
tent of the central depression is restricted by the bottom
of the tank. No hysteresis is observed upon increasing

Figure 5: Depth D vs. Ω2 for a Newtonian fluid. At
large rotation velocity Ω, the depth D is limited by the
bottom (h = 3 cm).

and decreasing Ω.

ii. First experimental observations in weakly
non-Newtonian fluids

Let us first consider the behavior of the free surface for
samples which exhibit rather small storage modulus G′

(Samples 3, 4 and 5, Table 1).
Upon increasing the rotation velocity Ω, above a

threshold, which depends on the depth h, a depression
appears at the vertical of the rotating disk (Fig. 6). Ini-
tially, the deformation is concave. But, upon increas-
ing Ω, one observes the appearance of shapes involv-
ing a change in the sign of the curvature of the profile
(Fig. 6, Ω ≥ 3.55 Hz). One can immediately notice
from the images that the geometry of the free surface is
mainly governed by geometrical constraints. We report
in Fig. 7 a summary of the main geometrical character-
istics of the observed deformation of the free surface as
function of Ω. We focus on three different characteris-
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tics: the depth D, i.e., the distance between the lowest
point of the profile and the free surface; the width W,
i.e., the typical diameter of the depression at the free
surface; the width Wi, i.e., the typical distance between
the inflection points in the profile from camera 1. On the
one hand, the lateral size of the depression, W or Wi, is
of the order of the diameter of the rotating disk. Hence,
we observe that the fluid can only be set in motion above
the rotating disk. The fluid motion is thus confined in a
vertical column having a diameter of about the diameter
of the disk. The remaining volume of fluid in the tank
remains at rest. On the other hand, the flow extends to
the free surface only if Ω is large enough. Upon fur-
ther increase of Ω, the depth D of the depression at the
free surface is rapidly limited by the depth of fluid, h.
At large Ω, the bottom of the depression is flat. Note,
however, that the disk is never dewetted and a thin layer
of fluid remains at center. In this conditions, the pro-
file of the free surface exhibits a significant hysteresis.
Indeed, upon decreasing Ω, one observes that the bot-
tom of the depression progressively detaches from the
bottom of the container but that the central part, that is
in solid body rotation, remains flat and horizontal. The
depth D decreases until it vanishes.

We finally mention that the crater can lose axi-
symmetry and exhibit polygonal shapes like smoke
rings [9, 10], liquid tori levitating due to Leidenfrost
effect [11], hydraulic jumps [12, 13] or simple liquids
in the same experimental conditions as ours [14, 15].
Vortex rings and their stability have attracted much at-
tention in the past [16] and we will not develop further
the case of weakly non-Newtonian fluids, but rather fo-
cus on the behavior of the free surface in the case of
strongly non-linear fluids. We shall see that the free
surface can then loose its initial axi-symmetry due to a
qualitatively different physical mechanism.

iii. Strongly non-Newtonian fluids

The samples 1 and 2 exhibit similar rheological proper-
ties and, in accordance, the behavior of the free surface
is very similar in both fluids. In addition, in spite of a
slight hysteresis, the system exhibits similar behaviors
for increasing and decreasing rotation velocities. Ex-
ploring a large range of height, h, and increasing rota-
tion velocity Ω, we report for sample 1, the set of 5 typ-
ical shapes of the free surface in the steady-state that we
managed to observe experimentally.

a. Bulge

For small rotation velocity Ω, we observe an axi-
symmetric bulge above the disk at the center (Fig. 8).
Around this bulge, the fluid is at rest, as can be directly
deduced from the roughness of the surface, which re-
mains static. In the central region, the fluid of the free
surface is in solid body rotation, as can be proven by
marking the surface with a tool and observing that this
mark remains unchanged. The rotation velocity at the
surface, ω, which is always smaller than the rotation
velocity of the disk, Ω, decreases when the depth h is
increased. We observe that, initially, the height of the
bulge increases when Ω is increased.

b. Cap

At a slightly larger rotation velocity Ω, a circular cap
pops up at the center of the bulge (Fig. 9). The tran-
sition depends slightly on the depth of fluid, the criti-
cal rotation velocity increasing almost linearly with h
(see state diagram in Fig. 13). In this regime, the fluid
around the bulge is still at rest, the cap at the center is in
solid-body rotation, but the free surface in the remain-
ing part of the bulge flows. The rotation velocity of the
cap is always smaller than that of the bulge in the cen-
tral region. As Ω is further increased, the bulge flattens
while the height of the cap above the free surface de-
creases (from 7-8 mm at the lowest velocities, down to
about 2 mm). Meanwhile, the diameter of the cap is of
about 2 cm in diameter, almost independent of Ω, for
small h (typically less than 3.5 cm). We note however
a slight decrease of its lateral size when Ω is increased
for larger h. These behaviors are reversible. We note
that a further increase of Ω leads to the appearance of a
depression around the cap.

c. Crater

When Ω is further increased, the cap sinks below the
free surface. We observe the formation of a crater
(Fig. 10), at the bottom of which the cap remains, at
least close to the transition which is discontinuous. In-
deed, the center of the free surface suddenly sinks from
several millimeters (Fig. 12). The onset increases with
h (see state diagram in Fig. 13). The depth of the crater
increases with Ω. By contrast, the diameter of the crater
at the top (typically 4-6 cm) does not depend signifi-
cantly on Ω but decreases when h is increased.
Depending on h, we observe two scenarios. For small
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Figure 6: Evolution of the free surface profile upon increasing rotation velocity, Ω. Note that the profile exhibits
significant hysteresis when Ω is cycled. The scalebar is worth 1 cm (Camera 1, h = 2.4 cm, sample 3).

height h (typically smaller than 3 cm), the center of the
crater remains circular at any rotation velocities and its
diameter decreases when Ω is increased. By contrast,
for larger height h (typically above 3 ∼ 3.5 cm), as the
rotation velocity increases, the central part of the crater
loses its original circular symmetry for taking an oval
shape. The cap becomes increasingly asymmetric when
Ω is increased; the size of the major axis always remains
constant while the size of the minor axis decreases pro-
gressively. In this case, a further increase of Ω leads
successively to two more states of the free surface, both
asymmetric, that we describe in the next sections.

d. Knife-edge

When the cap at the center of the crater is reduced
only to a furrow, the bottom of the depression sinks in
and takes the form of a twisted knife-edge that rotates

around the vertical axis (see Fig. 1). One thus notice the
occurrence of a furrow (with forks at both ends). The
transition seems to be continuous; the circular shape of
the negative cap turning, gradually, into a furrow that
sinks into the gel. The rotation velocity of the knife-
edge, ω, is again much smaller than that of the rotating
disc, Ω. Its length, W, and depth, D, depend on Ω; in
particular, W decreases when Ω is increased. Note that
the obtention of this steady knife-edge, equivalent to
that observed in Ref. [4], constitutes the main achieve-
ment of our experimental study. It is observed in a very
narrrow range of the experimental parameters as can be
seen in the state diagram reported in Fig. 13.

e. Singular point

Finally, when Ω is further increased, the length of the
knife-edge, W, decreases until it vanishes. The lat-
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Figure 7: (a) Typical depth D of the pattern at the free
surface vs. rotation velocity Ω for various depth of the
fluid bed, h. Note that the formation of the depression
at the free surface requires a larger rotation velocity Ω

when the depth h is larger (The typical accuracy of the
measurements is of about ±0.25 cm). (b) Typical depth,
D (_), and widths W (�) and Wi (�) of the pattern at
the free surface vs. rotation velocity Ω (Black symbols:
upon increasing Ω; Gray symbols: upon decreasing Ω,
h = 1.3 cm, sample 3).

ter then reduces to a single point (Fig. 11). The tran-
sition between the knife edge and the singular point
is again continuous. Note that the surface is still not
axi-symmetric but takes the shape of an inverted and
slightly twisted triangular-based pyramid. The latter ro-

Figure 8: For small rotation velocity Ω, on observes an
axisymmetric bulge at the vertical of the rotating disk
(Top: camera 4; Bottom: camera 1, Ω = 1.25 Hz,
h = 2.7 cm, sample 1). Associated movies Fig.8.c1.avi,
and Fig.8.c4.avi can be found as Supplementary mate-
rial [8].

Figure 9: At intermediate rotation velocity Ω, a cir-
cular cap pops up at the vertical of the rotation axis
(Top: camera 4; Bottom: camera 1, Ω = 2.6 Hz,
h = 2.7 cm, sample 1). Associated movies Fig.9.c1.avi,
and Fig.9.c4.avi can be found as supplementary mate-
rial [8].

tates around the vertical axis with a rotation velocity
smaller than that of the disc. Its typical size does signif-
icantly depend on Ω.
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Figure 10: At sufficiently large rotation velocity Ω,
the free surface sinks below its original level, lead-
ing to the formation of a crater. One can still observe
the cap at center (Top: camera 4; Bottom: camera 1,
Ω = 3.3 Hz, h = 2.4 cm, sample 1). Associated movies
Fig.10.c1.avi, and Fig.10.c4.avi can be found as supple-
mentary material [8].

Figure 11: At large rotation velocity Ω, the knife-
edge reduces to a point, leading to an assymmetric vor-
tex exhibiting a singular point at bottom (Camera 1,
Ω = 4.2 Hz, h = 3.3 cm, sample 1). Associated movies
Fig.11.c1.avi, and Fig.11.c2.avi as supplementary ma-
terial [8].

iv. State diagram

We have qualitatively distinguished 5 typical shapes of
the free surface. We report, in Fig. 12, an example of
the evolution of the characteristics of the pattern at the
free surface as function of the rotation velocity Ω for a
given depth of the fluid bed.

In order to go further, we propose, in Fig. 13, state
diagrams where the various patterns are located in the
plane (h,Ω). As only little hysteresis is observed be-
tween increasing and decreasing Ω, we report data for

Figure 12: (a) Typical width, W, and depth, D, of the
pattern at the free surface vs. rotation velocity, Ω. (b)
Rotation velocity of the pattern at the free surface, ω,
vs. rotation velocity of the disk Ω (h = 4.3 cm).

increasing rotation velocity, only. We note that the
knife-edge is seen in a narrow region at intermediate
rotation velocity Ω for sufficiently large depth h of the
fluid bath. In order to account for the effect of the fluid
proporties, we report diagrams for samples 1 and 2 (Ta-
ble 1). Sample 2 exhibits a slightly smaller storage
modulus G′ than sample 1. As a consequence, the do-
mains of the knige-edge (N) and of the singular point
(�) are slightly shifted toward larger depth, h, and thus
slightly reduced, compared to what was observed for
sample 1.

080007-8



Papers in Physics, vol. 8, art. 080007 (2016) / E. Freyssingeas et al.

Figure 13: State diagrams – We place in the plane (h,Ω)
the domain of existence of the various typical shapes of
the free surface observed experimentally. (a) Sample 1.
(b) Sample2 (◦ : Bulge; • : Cap; � : Negative cap; N :
Knife edge; � : Singular point, Sample 1).

IV. Discussion

In this section, we qualitatively explain the origin of
the observed patterns. From images from side, on can
have a clue on the structure of the flow in the material
(Fig. 14).

First, due to the non-sliding condition at the disk sur-
face, a rotation of the fluid with the orthoradial veloc-
ity r Ω is imposed at the bottom of the fluid bed above
the disk (r is the radial coordinate). The fluid enters
in motion in the radial direction if the associated stress
ρ (r Ω)2 exceeds the yield stress σ0. Denoting R the ra-
dius of the rotating disk, we can define a minimal rota-

Figure 14: Direct imaging of the convection rolls.
When new material is added, because of the difference
in temperature, one can observe the convection rolls
thanks to the inhomogeneity of the refraction index.
One can clearly observe at small velocity, the formation
of the convection rolls (Camera 1).

tion velocity Ωm ≡
√
σ0/ρ/R below which the fluid, in

the vicinity of the disk surface, does not flow in the ra-
dial direction (ρ denotes the density of the fluid). From
the experimental values of σ0, ρ and R, we estimate
Ωm = (0.3 ± 0.1) Hz, depending of the sample. The
latter value is compatible with the lower bound of the
rotation velocity range in which we observed deforma-
tion of the free surface.

Once the radial flow is initiated, it extends away
from the disks over a distance again limited by the
yield stress, σ0. Considering the orthoradial velocity
R Ω imposed at the edge of the rotating disk, assum-
ing that the flow extends over the distance L, we can
write that the viscous stress, ηRΩ/L, is constant and
equals the yield, the condition being imposed by the
fact that at R + L the fluid remains at rest. We get
L = ηRΩ/σ0. Here, η takes the value measure for
σ = σ0 (Fig. 4). For instance, considering the most
rigid fluid, with σ0 ∼ 800 Pa, we estimate η ∼ 50 Pa.s
and, thus, L ∼ 2 cm for Ω ∼ 1 Hz. This value is again
compatible with the observed radial extension of the roll
observed in Fig. 14.

Thus far, we have showed that the rotation of the disk
puts the fluid in radial motion in a region of typical di-
ameter 2(R + L) in the disk plane. In turn, this outward
flow has a pumping effect, i.e., fluid flows back above
the disk as can be seen in Fig. 14 and rolls form. Their

080007-9



Papers in Physics, vol. 8, art. 080007 (2016) / E. Freyssingeas et al.

typical vertical extension is imposed by the geometrical
constraints so that it is of the order of a fraction of the
radius of the disk, R. We assume here that the depth, h,
of the fluid bed does not limit the flow which thus does
no extend to the free surface. In this limit of deep fluid
beds, we predict that the fluid remains at rest around the
disk, at a radial distance larger that R + L, and above the
disk, at a distance of about αR, with α . 1. The re-
gion above the disk, in which the fluid is in motion, is
thus separated from the rest of the fluid which remains
at rest by a horizontal shear band which clearly visible
in Fig. 14. The thickness, T , of the shear band is such
that the shear stress equals the yield and we get, follow-
ing the same reasoning as above, that T ∼ L/2 ∼ 1 cm,
in agreement with the observations.

From this analysis of the underlying rolls, we can
qualitatively understand the sequence of the patterns we
observe experimentally. Note first that, in our experi-
mental conditions, the depth of the fluid bed, h, is al-
ways limited, smaller than R so that the rolls can reach
the free surface. Upon increasing Ω, one observes the
following sequence of patterns:

• Very small Ω, typically smaller than Ωm – The ro-
tation velocity is so small that it does not induce
any radial flow. No pattern is observed.

• Rotation velocity Ω & Ωm – The rotation velocity
is large enough to induce a radial flow, but only
in a limited region of the disk. Indeed, the radial
stress induced by the rotation overcomes the yield
stress for r > rm '

√
σ0/ρ/Ω, only. As a con-

sequence, rolls form but their typical radial size is
of the order of R − rm. Accordingly, their typical
vertical size is of about α (R − rm). Thus, because
of the solid-like behavior of the material below the
yield, a layer seats at rest on top of them. However,
the inward flow at the top of the rolls produces an
inward creep of the material above, leading to the
formation of the bulge.

• Rotation velocity Ω & Ωh, such that the rolls reach
the free surface – Due to the toroidal shape of the
rolls, the outer flow lines form a cusp at center. In
this region, above the cusp, the material does not
flow but, again due to the inward stress, the creep
leads to the formation of the cap, i.e., a volume
of fluid in solid body rotation surrounded by flow-
ing material. Considering that the top of the rolls
reaches the free surface when α(R−rm) = h, we get
Ωh =

√
σ0/ρ

α
αR−h . Typically, we get a value of Ωh

that is of the order of a few Hz for the most rigid
fluid and increases with h. In spite of a quantitative
discrepancy, the transition is correctly predicted by
this argument.

• For moderate values of Ω above Ωh, the horizon-
tal stress σ (Fig. 14) exerted by the rolls on the
fluid sitting on top still makes the free surface rise.
But, conversely, when Ω is further increased, the
increase of the vertical component of σ at the cen-
ter, which is oriented downward, overcomes the
inward radial contribution, which leads to a down-
ward displacement of the free surface. We oberve
what we called the ’negative’ cap. Indeed, even in
this case, a volume of the fluid can remain in solid
body rotation at the center. This transition is dif-
ficult to predict quantitatively without the knowl-
edge of the structure of the rolls, but the transition
is qualitatively well understood.

• Finally, further increase of the rotation velocity
leads to the erosion of the domain of fluid in solid
rotation at the center. When it disappears, we ob-
serve either the knife-edge or the singular point.
The transition is again difficult to predict precisely
but we can estimate the maximum value of the ver-
tical component of the velocity in the roll around,
vM , which is compatible with no flow at center. To
do so, we write that, at the external edge of the cen-
tral column of fluid, the shear stress, η vM/(2R), is
of about the yield stress σ0. Assuming further that
vM is of the order of the orthoradial velocity of the
fluid at the outer egde of the disk R ΩM , we es-
timate this central region which remains in solid
body rotation disappears for ΩM > 6 Hz. This
value is compatible, in order of magnitude, with
the velocity measured at the transition between the
cap and the knife-edge for the deepest fluid beds
(Fig. 13). Note, however, that the dependence on h
is not accounted for by our argument, which would
require the introduction of a precise description of
the rolls to account for the details of the transition.

Finally, we remark that, even if we qualitatively un-
derstand why the cap, submitted to the compressive
stress σ, can buckle and lose the axi-symmetry, we
are not able to describe the knife-edge and the singu-
lar point. The description of these specific patterns in
detail deserves a special theoretical effort.
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V. Conclusion

We carried out an experimental investigation of the de-
formation of the free surface of a complex fluid induced
by an underlying vortex. We observe, upon increasing
rotation velocity Ω, a sequence of patterns that we de-
scribed and understood, at least qualitatively, by con-
sidering the main characteristics of the underlying vor-
tex. We reported a state diagram in which the domains
of observation of the various patterns are placed in the
plane rotation velocity - depth of the fluid bed, (Ω − h).

The main achievement of our study is the observation
of the knife-edge and of the singular point that are very
specific patterns that would not be observed in Newto-
nian fluids. They are the steady-state version of the pre-
viously observed folding of the free surface of a com-
plex fluid during the penetration of a sinking bead [4].
Our experimental configuration is particularly interest-
ing as it makes possible the observation of patterns in
the steady state whereas the previous experiments only
gave access to transients.

However, the present study remains purely qualita-
tive and thereby raises several theoretical points. First,
a better description of the fluid flow, including a pre-
cise account of the fluid rheology, would be necessary
for a precise description of the state diagrams. But, in
addition, the experimental configuration is interesting
to answer several questions: are the patterns of the free
surface observed in this investigation generic to the non-
Newtonian fluids or for yield stress fluids only? Are
the same types of patterns observed for a viscoelastic
fluid (entangled solutions of polymers or wormlike mi-
celles)? The applications of such a study are numerous,
especially in terms of geophysics, where complex fluids
play an important role (landslides, lava flow).
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