[1] M Tinkham, Introduction to Superconductivity: Second Edition (Dover Books on Physics)(Vol I), Dover Publications INC, New York (2004).

[2] A V Chubukov, Chiral, nematic, and dimer states in quantum spin chains, Phys. Rev. B 44, 4693 (1991).

[3] L Kecke, T Momoi, A Furusaki, Multimagnon bound states in the frustrated ferromagnetic one-dimensional chain, Phys. Rev. B 76, 060407 (2007).

[4] P W Anderson, The resonating valence bond state in la2cuo4 and superconductivity, Science 235, 1196 (1987).

[5] A Parvej, M Kumar, Degeneracies and exotic phases in an isotropic frustrated spin-1/2 chain, J. Magn. Magn. Mater. 401, 96 (2016).

[6] X L Qi, S C Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011).

[7] M Nakamura, Tricritical behavior in the extended hubbard chains, Phys. Rev. B 61, 16377 (2000).

[8] P Sengupta, A W Sandvik, D K Campbell, Bond-order-wave phase and quantum phase transitions in the one-dimensional extended hubbard model, Phys. Rev. B 65, 155113 (2002).

[9] M Kumar, S Ramasesha, Z G Soos, Tuning the bond-order wave phase in the half-filled extended hubbard model, Phys. Rev. B 79, 035102 (2009).

[10] M Suzuki (Ed.), Quantum Monte Carlo Methods in Condensed Matter Physics, World Scientific, Singapore (1993).

[11] W Kohn, L J Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).

[12] K G Wilson, The renormalization group and critical phenomena, Rev. Mod. Phys. 55, 583 (1983).

[13] S R White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).

[14] S R White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48, 10345 (1993).

[15] U Schollwock, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259 (2005).

[16] K A Hallberg, New trends in density matrix renormalization, Adv. Phys. 55, 477 (2006).

[17] Z G Soos, A Parvej, M Kumar, Numerical study of incommensurate and decoupled phases of spin-1/2 chains with isotropic exchange J1, J2 between first and second neighbors, J. Phys. Condens. Mat. 28, 175603 (2016).

[18] U Schollwock, The density-matrix renormalization group in the age of matrix product states, Ann. Phys. 326, 96 (2011).

[19] P Pippan, S R White, H G Evertz, Efficient matrix-product state method for periodic boundary conditions, Phys. Rev. B 81, 081103 (2011).

[20] E Dagotto, T M Rice, Surprises on the way from one- to two-dimensional quantum magnets: The ladder materials, Science 271, 618 (1996).

[21] S Ostlund, S Rommer, Thermodynamic limit of density matrix renormalization, Phys. Rev. Lett. 75, 3537 (1995).

[22] F Verstraete, D Porras, J I Cirac, Density matrix renormalization group and periodic boundary conditions: A quantum information perspective, Phys. Rev. Lett. 93, 227205 (2004).

[23] F Verstraete, J I Cirac, J I Latorre, E Rico, M M Wolf, Renormalization-group transformations on quantum states, Phys. Rev. Lett. 94, 140601 (2005).

[24] S K Pati, S Ramasesha, Z Shuai, J L Bredas, Dynamical nonlinear optical coefficients from the symmetrized density-matrix renormalization-group method, Phys. Rev. B 59, 14827 (1999).

[25] K A Hallberg, Density-matrix algorithm for the calculation of dynamical properties of low-dimensional systems, Phys. Rev. B 52, R9827 (1995).

[26] I Affleck, D Gepner, H J Schulz, T Ziman, Critical behaviour of spin-s Heisenberg antiferromagnetic chains: analytic and numerical results, J. Phys. A - Math. Gen. 22, 511 (1989).

[27] D Rossini, V Giovannetti, R Fazio, Spin-supersolid phase in Heisenberg chains: A characterization via matrix product states with periodic boundary conditions, Phys. Rev. B 83, 140411 (2011).

[28] D Rossini, V Giovannetti, R Fazio, Stiffness in 1D matrix product states with periodic boundary conditions, J. Stat. Mech. 2011, P05021 (2011).

[29] A W Sandvik, Computational Studies of Quantum Spin Systems, AIP Conf. Proc. 201297, 135 (2010).