[1] R Albert, A-L Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47 (2002).

[2] M E J Newman, The Structure and Function of Complex Networks, SIAM Review 45, 167 (2003).

[3] S R Proulx, D E L Promislow, P C Phillips, Network thinking in ecology and evolution, Trends Ecol. Evol. 20, 345 (2005).

[4] S Boccaletti, V Latora, Y Moreno, M Chavez, D U Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424, 175 (2006).

[5] N A Alves, A S Martinez, Inferring topological features of proteins from amino acid residue networks, Physica A 375, 336 (2007).

[6] S H Yook, Z N Oltvai, A-L Barabasi, Functional and topological characterization of protein interaction networks, Proteomics 4, 928 (2004).

[7] V Colizza, A Flammini, A Maritan, A Vespignani, Characterization and modeling of protein--protein interaction networks, Physica A 352, 1 (2005).

[8] H Jeong, B Tombor, R Albert, Z N Oltvai, A-L Barabasi, The large-scale organization of metabolic networks, Nature 407, 651 (2000).

[9] J M Montoya, S L Pimm, R V Sole, Ecological networks and their fragility, Nature 442, 259 (2006).

[10] J A Dunne, R J Williams, N D Martinez, Food web structure and network theory: The role of connectance and size, P. Natl. Acad. Sci. USA 99, 12917 (2002).

[11] O Sporns, D R Chialvo, M Kaiser, C C Hilgetag, Organization, development and function of complex brain networks, Trends Cogn. Sci. 8, 418 (2004).

[12] V M Eguiluz, D R Chialvo, G A Cecchi, M Baliki, A V Apkarian, Scale-Free Brain Functional Networks, Phys. Rev. Lett. 94, 018102 (2005).

[13] E Ravasz, A-L Barabasi, Hierarchical organization in complex networks, Phys. Rev. E 67, 026112 (2003).

[14] M E J Newman, Mixing patterns in networks, Phys. Rev. E 67, 026126 (2003).

[15] E Weiher, P Keddy, Ecological Assembly Rules, Cambridge U. Press, Cambridge (1999).

[16] S L Pimm, The balance of Nature, The University of Chicago Press, Chicago (1991).

[18] R M May, Will a large complex system be stable?, Nature 238, 413 (1972).

[19] J I Perotti, O V Billoni, F A Tamarit, D R Chialvo, S A Cannas, Emergent Self-Organized Complex Network Topology out of Stability Constraints, Phys. Rev. Lett. 103, 108701 (2009).

[22] C Melia, J Bascompte, Food web cohesion, Ecology 85, 352 (2004).

[23] J A Dunne, Food webs, In: Encyclopedia of Complexity and Systems Science, Ed. R. A. Meyers, pag. 3661, Springer, New York (2009).

[26] V Sole, D Alonso, A McKane, Physica A 286, 337 (2000).

[27] K Klemm, V M Eguiluz, Growing scale-free networks with small-world behavior, Phys. Rev. E 65, 057102 (2002).

[28] E Ravasz, A L Somera, D A Mongru, Z N Oltvai, A-L Barabasi, Hierarchical Organization of Modularity in Metabolic Networks, Science 297, 1551 (2002).

[29] M Brede, S Sinha, Assortative mixing by degree makes a network more unstable, arXiv:cond-mat/0507710 (2005).

[30] S Sinha, S Sinha, Robust emergent activity in dynamical networks, Phys. Rev. E 74, 066117 (2006),

[31] S Allesina, M Pascual, Network structure, predator--prey modules, and stability in large food webs, Theor. Ecol. 1, 55 (2008).

[32] S Sinha, Complexity vs. stability in small--world networks, Physica A 346, 147 (2005).

[33] J A Dunne, The Network Structure of Food Webs, In: Ecological networks: Linking structure to dynamics in food webs, Eds. M. Pascual, J A Dunne, pag. 27, Oxford University Press, Oxford (2006).

[34] L A N Amaral, A Scala, M Barthelemy, H E Stanley, P. Natl. Acad. Sci. USA 97, 11149 (2000).

[35] T Nishikawa, A Motter, Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions, P. Natl. Acad. Sci. USA 107, 10342 (2010).