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Green’s functions technique for calculating the emission spectrum in a
quantum dot-cavity system

Edgar A. Gómez,1∗ J. D. Hernández-Rivero,2 Herbert Vinck-Posada3

We introduce the Green’s functions technique as an alternative theory to the quantum
regression theorem formalism for calculating the two-time correlation functions in open
quantum systems at the steady state. In order to investigate the potential of this theoret-
ical approach, we consider a dissipative system composed of a single quantum dot inside
a semiconductor cavity and the emission spectrum is computed due to the quantum dot
as well as the cavity. We propose an algorithm based on the Green’s functions technique
for computing the emission spectrum that can easily be adapted to more complex open
quantum systems. We found that the numerical results based on the Green’s functions
technique are in perfect agreement with the quantum regression theorem formalism. More-
over, it allows overcoming the inherent theoretical difficulties associated with the direct
application of the quantum regression theorem in open quantum systems.

I. Introduction

The measurement and control of light produced by
quantum systems have been the focus of interest
of the cavity quantum electrodynamics [1, 2]. Spe-
cially, the emission of light powered by solid-state
devices coupled to nanocavities is an extensive area
of research due to its promising technological appli-
cations, such as infrared and low-threshold lasers
[3,4], single and entangled photon sources [5,6], as
well as various applications in quantum cryptogra-
phy [7] and quantum information theory [8]. Ex-
periments with semiconductor quantum dots (QDs)
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embedded in microcavities have revealed a plethora
of quantum effects and offer desirable properties
for harnessing coherent quantum phenomena at the
single photon level. For example, the Purcell en-
hancement [9], photon antibunching [10], vacuum
Rabi splitting [11] and strong light matter coupling
[12]. These and many other quantum phenom-
ena are being confirmed experimentally by observ-
ing the power spectral density of the light (PSD)
emitted by the quantum-dot cavity systems (QD-
cavity). Thus, the PSD, or the so-called emission
spectrum of the system, becomes the only relevant
information that allows to study the properties of
the light via measurements of correlation functions,
as it is stated by the Wiener-Khintchine theorem
[13]. In order to compute the emission spectrum
of the QD-cavity systems in the framework of open
quantum systems, different approaches have been
elaborated from the theoretical point of view. For
example, the method of thermodynamic Green’s
functions has been applied to the determination
of the susceptibilities and absorption spectrum of
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atomic systems embedded in nanocavities [14], the
time-resolved photo-luminescence approach whose
application allows to determine the emission spec-
trum when an additional subsystem is considered,
the so-called the photon reservoir [15]. These theo-
retical approaches are based on several approxima-
tions and therefore, they have their own limitations
when they are considered in more general scenar-
ios. In consequence, these methods are not used
extensively.
Frequently, the emission spectrum of QD-cavity
systems is computed through the Quantum Regres-
sion Theorem (QRT) [16–18], since it relates the
evolution of mean values of observables and the
two-time correlation functions. It is worth men-
tioning that the QRT approach can be difficult to
implement in a computer program because com-
putational complexity increases significantly as the
number of QDs or modes inside the cavity are being
considered; more precisely, the dimensionality asso-
ciated with the Hilbert space is large. In general,
the QRT approach is time-consuming because it is
required to solve a large system of coupled differen-
tial equations and numerical instabilities that can
arise. Moreover, theoretical complications related
to dynamics of the operators involved can appear,
as we will point out in the next section. In spite of
this, the QRT approach is widely used in theoret-
ical works, for example, in studies about photolu-
minescence spectra of coupled light-matter systems
in microcavities in the presence of a continuous
and incoherent pumping [19, 20]. Also, in studies
considering the relation between dynamical regimes
and entanglement in QD-cavity systems [21,22]. In
the past, the Green’s functions technique (GFT)
was successfully applied for calculating the emis-
sion spectrum for a very simple quantum system,
e.g., the micro-maser [23]. Nevertheless, this ap-
proach has not been widely noticed in many sig-
nificant situations in open quantum systems. The
purpose of this work is to provide a simple and ef-
ficient numerical method based on the GFT in or-
der to overcome the inherent difficulties associated
with the direct application of the QRT approach
by solving the dynamics of the system in the fre-
quency domain directly. This paper is structured
as follows: the theoretical background of the QRT
as well as the GFT are presented in section II. A
concrete application of our proposed methodology
for calculating the emission spectrum of the QD-

cavity system is considered in section III. Moreover,
for comparison purposes with the GFT, we discuss
in some detail the methodology of the QRT for cal-
culating the emission spectrum of the cavity. The
numerical results for the emission spectrum of the
quantum dot, as well as of the cavity obtained from
both the GFT and the QRT, are shown in section
IV. A discussion about our findings is summarized
in section V.

II. Theoretical background

i. Quantum regression theorem

One of the most important measurements when the
light excites resonantly a QD-cavity system is the
emission spectrum of the system. From a theo-
retical point of view, it is assumed that it corre-
sponds to a stationary and ergodic process which
can be calculated as a PSD of light by using the
well-known Wiener-Khintchine theorem [13]. This
theorem states that the emission spectrum is given
by the Fourier Transform of the two-time correla-
tion function of the operator field â; explicitly, it
is

S(ω) = Re lim
t→∞

∫ ∞
0

〈â†(t+ τ)â(t)〉eiωτdτ. (1)

In order to calculate the two-time correlation
function involved in Eq. (1), a theoretical ap-
proach based on the QRT is frequently consid-
ered. It states that if a set of operators {Ôi(t +
τ)} satisfy the dynamical equations d

dτ 〈Ôi(t +

τ)〉 =
∑
j Lij〈Ôj(t+ τ)〉 then d

dτ 〈Ôi(t+ τ)Ô(t)〉 =∑
j Lij〈Ôj(t+τ)Ô(t)〉 is valid for any operator Ô(t)

at an arbitrary time t. Here, Lij represents the
matrix of coefficients associated with the coupled
linear equations of motion. It is worth mention-
ing that validity of this theorem holds whenever a
closed set of operators is associated with the dy-
namics. In general, to obtain the closed set of op-
erators can be difficult or an impossible task, since
there must be added as many operators as neces-
sary in order to close the dynamics of the system.
For example, to calculate the emission spectrum in
a model of QD-cavity system [20, 21], two new op-
erators are required because the field operators in
the interaction picture do not lead to a complete
set.
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ii. Green’s functions technique

Let us consider a QD-cavity system and an operator
Â which does not operate on the reservoirs, then
its single-time expectation value in the Heisenberg
representation is given by

〈 ˆ̃A(t+ τ)〉 = TrS⊗R[ ˆ̃A(t+ τ)ˆ̃ρS⊗R(t)]. (2)

The density operator system-reservoir can be
evolved from an initial state at time 0 to an arbi-
trary time t via ˆ̃ρS⊗R(t) = Û†(t, 0)ρ̂S⊗R(0)Û(t, 0),
with Û(t, 0) being a unitary time-evolution opera-
tor involving the Hamiltonian terms of the system
and reservoirs. Moreover, the operator ˆ̃ρS⊗R(t) =
ˆ̃ρS(t)⊗ ˆ̃ρR(t) depicts the composite density opera-
tor of the system and reservoir. It is worth point-
ing out that tilde means that the operator has been
transformed to the Heisenberg representation and
that the dynamics of the system depend directly on
ˆ̃ρS⊗R(t) for all times. The validity of the Marko-
vian approximation requires that the state of the
system is sufficiently well described when it is con-
sidered that ˆ̃ρS(t) = TrR(ˆ̃ρS⊗R(t)). Therefore, it
is sufficient to write ˆ̃ρS⊗R(t) = ˆ̃ρS(t) ⊗ ˆ̃ρR(t) for
all times. If we assume that at t = 0 the ini-
tial state of the system is the steady state, then
ˆ̃ρS⊗R(0) = ρ̂

(ss)
S⊗R. Here, the superscript ”(ss)”

should be understood to be the steady state of the
system-reservoir. After tracing over degrees of free-
dom of the reservoirs, we have that the Eq. (2) takes
the form

〈 ˆ̃A(τ)〉 = TrS [ ˆ̃A(0)ˆ̃ρS(τ)], (3)

where the reduced density operator for the system
is given by ˆ̃ρS(τ) = TrR[Û(τ, 0)ˆ̃ρS⊗R(0)Û†(τ, 0)]

and ˆ̃A(0) = Â. If ˆ̃ρS(τ) satisfies the Lindblad mas-
ter equation d ˆ̃ρS(τ)/dτ = L ˆ̃ρS(τ) with L the su-
peroperator defined as L ˆ̃ρS(τ) = −i[ĤS , ˆ̃ρS(τ)] +∑
j

Γj

2 (2X̂j
ˆ̃ρS(τ)X̂†j−X̂

†
j X̂j

ˆ̃ρS(τ)− ˆ̃ρS(τ)X̂†j X̂j) for

an operator X̂j , then the expectation value 〈 ˆ̃A(τ)〉
can be computed by solving the dynamics associ-
ated to the Lindblad master equation. It is worth
mentioning that the Hamiltonian operator ĤS de-
scribes the QD-cavity system and Γj corresponds
to the damping (pumping) rate associated to the
operator X̂j .
In order to calculate the two-time correlation func-
tion 〈 ˆ̃A(t + τ) ˆ̃B(t)〉 where ˆ̃A(t + τ) = Û†(t +

τ, t) ˆ̃A(t)Û(t+ τ, t) and ˆ̃B(t) = Û†(t, 0)B̂Û(t, 0) are
arbitrary Heisenberg operators which do not oper-
ate on the reservoirs, we proceed similarly to the
case of the single-time expectation value, it is

〈 ˆ̃A(τ) ˆ̃B(0)〉 = TrS⊗R[ ˆ̃A(τ) ˆ̃B(0)ˆ̃ρS⊗R(0)],

= TrS [ ˆ̃A(0) ˆ̃G(τ)], (4)

where we have used the well-known properties of
the unitary time-evolution operator and the fact
that the system at time t = 0 is in the steady state.
We have defined the operator

ˆ̃G(τ) = TrR[Û(τ, 0) ˆ̃B(0)ˆ̃ρS⊗R(0)Û†(τ, 0)] (5)

where the trace operation is performed on the reser-
voirs only. By performing the time derivation of
Eq. (4), we have that

d

dτ
〈 ˆ̃A(τ) ˆ̃B(0)〉 = TrS [ ˆ̃A(0)

d ˆ̃G(τ)

dτ
]. (6)

where

d ˆ̃G(τ)

dτ
=

d

dτ
TrR[Û(τ, 0) ˆ̃B(0)ˆ̃ρS⊗R(0)Û†(τ, 0)],

=
d

dτ
TrR[ ˆ̃B(τ)ˆ̃ρS⊗R(τ)],

= TrR[ ˆ̃B(τ)
d ˆ̃ρS⊗R(τ)

dτ
+ ˆ̃ρS⊗R(τ)

d ˆ̃B(τ)

dτ
],

= TrR[ ˆ̃B(τ)
d ˆ̃ρS⊗R(τ)

dτ
],

+ TrR[
d ˆ̃B(τ)

dτ
ˆ̃ρS⊗R(τ)]. (7)

Notice that the last term vanishes since

TrR[d
ˆ̃B(τ)
dτ

ˆ̃ρS⊗R(τ)] = d
dτ TrR[ ˆ̃B(0)ˆ̃ρS⊗R(0)] is

independent of time τ . Thus, the Eq. (7) can be
reduced to the form

d ˆ̃G(τ)

dτ
= TrR[

d ˆ̃ρS⊗R(τ)

dτ
ˆ̃B(τ)],

= TrR[L ˆ̃ρS⊗R(τ) ˆ̃B(τ)],

= LTrR[ ˆ̃ρS⊗R(τ) ˆ̃B(τ)],

= LTrR[Û(τ, 0) ˆ̃B(0)ˆ̃ρS⊗R(0)Û†(τ, 0)],

= L ˆ̃G(τ) (8)
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where we have taken into account that the super-
operator L acts only on the system Hilbert space
and not on the reservoir. It is straightforward to

conclude that ˆ̃G(τ) is an operator that obeys the
same dynamical equations as ˆ̃ρS(τ). More pre-

cisely, d ˆ̃G(τ)/dτ = L ˆ̃G(τ) with the boundary con-

dition ˆ̃G(0) = ˆ̃B(0)ˆ̃ρS(0) at the steady state of the
system.
We also conclude that the two-time correlation
function in the long-time limit can be written as

lim
t→∞
〈 ˆ̃A(t+ τ) ˆ̃B(t)〉 = TrS [Â ˆ̃G(τ)], (9)

where ˆ̃G(τ) = TrR[Û(τ)B̂ρ̂
(ss)
S⊗RÛ

†(τ)] is defined as

the Green’s functions operator and the operators Â,

B̂ and ρ̂
(ss)
S⊗R are in the Schrödinger representation.

Â = ˆ̃A(0) and B̂ = ˆ̃B(0) are operators considered
at the steady state of the system. In the remainder
of the paper, we assume that Û(τ) ≡ Û(τ, 0). Par-
ticularly, the Eq. (9) takes the form of the Eq. (1)
after performing the integral transformation. More
precisely, by taking the real part of the Laplace
transform to the Eq. (9), we obtain an expression
in terms of the Green’s functions operator in the
frequency domain as follows

S(ω) = Re TrS [Â
ˆ̃
G(iω)]. (10)

Notice that the operators Â and B̂ should be
defined appropriately for describing the emission
spectrum due to the cavity or the quantum dot.
Moreover, the wide tilde is used to indicate that
the Laplace transform was taken. The superscript
”(ss)” should be understood to be the steady state
of the reduced density operator of the system. Af-
ter taking the Laplace transform of the Eq. (9), we
obtain an expression for the emission spectrum of
the system in terms of the Green’s functions oper-
ator in the frequency domain as follows

S(ω) =
1

πnc
ReTrS [Â ˆ̃G(iω)]. (11)

Prior to leaving this section, we mention that this
result will be the starting point for calculating the
emission spectrum due to the cavity as well as
the quantum dot by considering the photon and
fermionic operators in a separated way.

III. Application to the QD-cavity
system

i. Model

In order to illustrate the potential of the Green’s
function technique for calculating the emission
spectrum in a QD-cavity system, we will consider
an open quantum system composed of a quantum
dot interacting with a confined mode of the electro-
magnetic field inside a semiconductor cavity. This
quantum system is well described by the Jaynes-
Cummings Hamiltonian [24]

ĤS = ωX σ̂
†σ̂+ (ωX −∆)â†â+ g(σ̂â†+ âσ̂†), (12)

where the quantum dot is described as a fermionic
system with only two possible states, e.g., |G〉 and
|X〉 are the ground and excited state. σ̂ = |G〉〈X|
and â (σ̂† = |X〉〈G| and â†) are the annihilation
(creation) operators for the fermionic system and
the cavity mode, respectively. The parameter g is
the light-matter coupling constant. Moreover, note
that we have set h̄ = 1. We also define the detun-
ing between frequencies of the quantum dot and
the cavity mode as ∆ = ωX − ωa, where ωX and
ωa are the energies associated to an exciton and
the photons inside the cavity, respectively. This
Hamiltonian system is far from describing any real
physical situation since it is completely integrable
[25] and no measurements could be done since the
light remains always inside the cavity.
In order to incorporate the effects of the environ-
ment on the dynamics of the system, we consider
the usual approach to model an open quantum sys-
tem by considering a whole system-reservoir Hamil-
tonian which is frequently split in three parts.
Namely, Ĥ = ĤS + ĤSR + ĤR, where ĤS de-
fines the Hamiltonian term of the QD-cavity sys-
tem as it is defined in the Eq. (12). The Hamilto-
nian terms ĤSR and ĤR corresponding to a bilin-
ear coupling between the system-reservoir and its
respective reservoirs ĤR have been discussed in de-
tail by Perea et al. in [26]. The reader can find a
detailed discussion of the Markovian master equa-
tion in [27, 28]. In the framework of open quan-
tum systems, different reservoirs have been pro-
posed in order to describe the dissipation, deco-
herence or decays. Particularly, for QD-cavity sys-
tems, a reservoir is considered for describing the
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physical situation where the photons are absorbed
in a semiconductor and electron-hole pairs (exci-
tons) can be produced which can be associated to
either electrical injection or the capture of excitons
optically created at frequencies larger than the typ-
ical ones of our system. This process corresponds
to the so-called continuous and incoherent pumping
of the QD. Also, when the excitons are coupled to
the leaky modes of the cavity with energy different
than the cavity mode, there is a residual density of
states inside the cavity and this process is responsi-
ble for the spontaneous emission (radiative recom-
bination) to an independent reservoir of photons.
Another physical process is known as the coherent
emission and it is due to the direct dissipation of the
cavity mode, more precisely, the cavity mode is cou-
pled to the continuum of photonic modes out of the
cavity. For obtaining the master equation for the
QD-cavity system, it is convenient to consider the
interaction picture with respect to ĤS + ĤSR and
assume the validity of the Born-Markov approxi-
mation. After tracing out the degrees of freedom
of all the reservoirs, one arrives to the Lindblad
master equation for the reduced density matrix of
the system

d ˆ̃ρS
dτ

= −i
[
ĤS , ˆ̃ρS

]
+

κ

2
(2â ˆ̃ρS â

† − â†â ˆ̃ρS − ˆ̃ρS â
†â)

+
γ

2
(2σ̂ ˆ̃ρS σ̂

† − σ̂†σ̂ ˆ̃ρS − ˆ̃ρS σ̂
†σ̂)

+
P

2
(2σ̂† ˆ̃ρS σ̂ − σ̂σ̂† ˆ̃ρS − ˆ̃ρS σ̂σ̂

†). (13)

The parameter γ is the decay rate due to the spon-
taneous emission, κ is the decay rate of the cavity
photons across the cavity mirrors, and P is the rate
at which the excitons are being pumped. Figure 1
shows a scheme of the simplified model of the QD-
cavity system showing the processes of continuous
pumping P and cavity loses κ. The physical pro-
cess begins when the light from the pumping laser
enters into the cavity and excites one of the quan-
tum dots in the QD layer. Thus, light from this
source couples to the cavity and a fraction of pho-
tons escapes through the partly transparent mirror
from the cavity and goes to the spectrometer for
measurements of the emission spectrum.
A general approach for solving the dynamics of the
system consists in writing the corresponding Bloch

equations for the reduced density matrix of the sys-
tem in the bared basis. It is an extended Hilbert
space formed by taking the tensor product of the
state vectors for each of the system components,
{|G〉, |X〉} ⊗ {|n〉}∞n=0. In this basis, the reduced
density matrix ρ̂S can be written in terms of its ma-
trix elements as ρ̃Sαn,βm ≡ 〈αn| ˆ̃ρS(τ)|βm〉. Hence,
the Eq. (13) explicitly reads

dρ̃Sαn,βm
dτ

= i
[
(ωX −∆)(m− n)ρ̃Sαn,βm

+ ωX(δβX ρ̃Sαn,Xm − δαX ρ̃SXn,βm)
]

+ ig
[(√

m+ 1δβX ρ̃Sαn,Gm+1

+
√
mδβGρ̃Sαn,Xm−1

)
−

(√
nδαGρ̃SXn−1,βm

+
√
n+ 1δαX ρ̃SGn+1,βm

)]
+

κ

2

(
2
√

(m+ 1)(n+ 1)ρ̃Sαn+1,βm+1

− (n+m)ρ̃Sαn,βm

)
− γ

2

(
δαX ρ̃SXn,βm

− 2δαGδβGρ̃SXn,Xm + δβX ρ̃Sαn,Xm

)
+

P

2

(
2δαXδβX ρ̃SGn,Gm − δαGρ̃SGn,βm

− δβGρ̃Sαn,Gm

)
. (14)

Note that we use the convention that all indices
written in Greek alphabet are used for the fermionic
states and take only two possible values |G〉, |X〉.
The indices written in Latin alphabet are used
for the Fock states which take the possible val-
ues 0, 1, 2, 3 . . . Additionally, it is worth mentioning
that our proposed method does not require to solve
a system of coupled differential equations, instead
of it, we solve a reduced set of algebraic equations
that speed up the numerical solution.
Prior to leaving this section, we point out that the
number of excitations of the system is defined by
the operator N̂ = â†â + σ̂†σ̂. The closed system
and the number of excitations of the system is con-
served, i.e., [ĤS , N̂ ] = 0. It allows us to orga-
nize the states of the system through the number
of excitations criterion such that the density ma-
trix elements ρ̃Gn,Gn, ρ̃Xn−1,Xn−1, ρ̃Gn,Xn−1 and
ρ̃Xn−1,Gn are related by having the same number of
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Figure 1: The picture represents a QD-cavity sys-
tem showing the processes of continuous pumping
P and cavity loses κ.

Figure 2: Ladder of bared states for a two-level
quantum dot coupled to a single cavity mode. The
double headed green arrow depicts the matter cou-
pling constant g, dashed red lines the emission of
the cavity mode κ, solid black lines the exciton
pumping rate P and solid blue lines the sponta-
neous emission rate γ.

quanta; sub-spaces of a fixed number of excitation
evolve independently from each other. The Fig. 2
shows a schematic representation of the action of
the dissipative processes involved in the dynamics
of the system according to the excitation number
(Nexc).

ii. Emission spectrum of the cavity based
on the GFT

In order to compute the emission spectrum of the
cavity, we will consider the two-time correlation
function accordingly with the Eq. (9) for the field
operator as follows

lim
t→∞
〈ˆ̃a†(t+ τ)ˆ̃a(t)〉 = TrS [â† ˆ̃G(τ)]. (15)

Where we have considered that the field operator
is given by ˆ̃a(0) = â at the steady state. After per-
forming the partial trace over the degrees of free-
dom of the system, we have that

TrS [â† ˆ̃G(τ)] =
∑

α,β,γ,l,m,n

√
(l + 1)(m+ 1)

× TrR[Uαl,βm(τ)

× 〈βm+ 1|ρ̂(ss)
S⊗R|γn〉U

†
γn,αl+1(τ)],

(16)

where the matrix elements for the time evolution
operator are given by Uαl,βm(τ) = 〈αl|Û(τ)|βm〉
and U†γn,αl+1(τ) = 〈γn|Û†(τ)|αl + 1〉. In what
follows, we assume the validity of the Markovian
approximation, it means that the correlations be-
tween the system and the reservoir must be unim-
portant even at the steady state. Thus, the den-
sity operator system-reservoir can be written as

ρ̂
(ss)
S⊗R = ρ̂

(ss)
S ⊗ ρ̂(ss)

R which implies that

〈βm+ 1|ρ̂(ss)
S⊗R|γn〉 = ρ̂

(ss)
R 〈βm+ 1|ρ̂(ss)

S |γn〉. (17)

Replacing the previous expression in Eq. (16), it is
straightforward to show that the two-time correla-
tion function reads

TrS [â† ˆ̃G(τ)] =
∑
αl

√
l + 1〈αl| ˆ̃G(τ)|αl + 1〉, (18)

where the Green’s functions operator ˆ̃G(τ) is given
by

ˆ̃G(τ) = TrR

[
Û(τ)ρ̂

(ss)
R

∑
βγmn

(√
m+ 1 |βm〉 〈γn|

× 〈βm+ 1| ρ̂(ss)
S |γn〉

)
Û†(τ)

]
. (19)
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As we pointed out in section II, this operator must
obey the same master equation as the reduced den-
sity operator of the system. In fact, the terms that
only contribute in the Eq. (18) are given by the ma-

trix elements G̃βm,γn(τ) ≡ 〈βm| ˆ̃G(τ) |γn〉 of the
Green’s functions operator. This is due to the fact
that the projection operator |βm〉 〈γn| enters into
ˆ̃G(τ) in the same way as into the reduced density
operator of the system.
In order to identify these matrix elements, it should
be considered that for the QD-cavity system, the
dynamics of all coherences asymptotically van-
ish and there only remains the reduced density
matrix elements which are ruled by the number
of excitations criterion, i.e., ρGn,Gn, ρXn−1,Xn−1,
ρGn,Xn−1, ρXn−1,Gn. Thus, the Eq. (17) can be
written as follows

〈βm+ 1|ρ̂(ss)
S⊗R|γn〉 = ρ̂

(ss)
R

(
δβGδγGδm+1,n

+ δβXδγXδm,n−1

+ δβGδγXδm,n

+ δβXδγGδm+1,n−1

)
× ρ

(ss)
Sβm+1,γn.

(20)

By replacing the Eq. (20) into Eq. (19), we find that
the Green’s functions operator explicitly reads

ˆ̃G(τ) = TrR

[
Û(τ)ρ̂

(ss)
R

∑
m

√
m+ 1

×
(
|Gm〉 〈Gm+ 1| ρ(ss)

SGm+1,Gm+1

+ |Xm〉 〈Xm+ 1| ρ(ss)
SXm+1,Xm+1

+ |Gm〉 〈Xm| ρ(ss)
SGm+1,Xm

+ |Xm〉 〈Gm+ 2|

× ρ
(ss)
SXm+1,Gm+2

)
Û†(τ)

]
. (21)

Note that from this expression, it is easy to identify
the nonzero matrix elements of the Green’s func-
tions operator that contribute to the emission spec-
trum. Finally, after performing the Laplace trans-
form to the Eq. (18), we have that the emission
spectrum of the cavity is given by

S(ω) = Re
∑
l

√
l + 1

(
G̃Gl,Gl+1(iω)

+ G̃Xl,Xl+1(iω) + G̃Gl,Xl(iω)

+ G̃Xl,Gl+2(iω)
)
. (22)

It is worth mentioning that the initial conditions
may be obtained by evaluating the Green’s func-
tion operator at τ = 0. Moreover, by using the fact
that the time evolution operators become the iden-

tity and TrR[ρ̂
(ss)
R ] = 1. We obtain a set of initial

conditions given by

G̃Gl,Gl+1(0) =
√
l + 1ρ

(ss)
SGl+1,Gl+1,

G̃Xl,Xl+1(0) =
√
l + 1ρ

(ss)
SXl+1,Xl+1,

G̃Gl,Xl(0) =
√
l + 1ρ

(ss)
SGl+1,Xl,

G̃Xl,Gl+2(0) =
√
l + 1ρ

(ss)
SXl+1,Gl+2. (23)

Note that this set of initial conditions corresponds
to the steady state of the reduced density matrix of
the system. A general algorithm based on the GFT
for computing the emission spectrum is presented
in the appendix. We mention that this approach
can be adapted easily for calculating the emission
spectrum due to the cavity as well as the quantum
dot.

iii. Emission spectrum of the quantum dot
based on the GFT

In order to compute the emission spectrum of the
quantum dot, we will consider the two-time corre-
lation function given by Eq. (9), but for the case of
the matter operator

lim
t→∞
〈ˆ̃σ†(t+ τ)ˆ̃σ(t)〉 = TrS [σ̂† ˆ̃G(τ)] (24)

where we have considered that the matter opera-
tor is given by ˆ̃σ(0) = σ̂ at the steady state. It is
straightforward to show, after performing the par-
tial trace over the degrees of freedom of the system,
that the two-time correlation function reads

TrS [σ̂† ˆ̃G(τ)] =
∑
αl

δαX〈Gl| ˆ̃G(τ)|αl〉, (25)
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where the Green’s functions operator ˆ̃G(τ) is given
by

ˆ̃G(τ) = TrR

[
Û(τ)

∑
βγmn

(
δβX |Gm〉 〈γm|

× 〈βm| ρ̂(ss)
S⊗R |γn〉

)
Û†(τ)

]
. (26)

Assuming again the validity of the Markovian ap-
proximation and taking into account the number
of excitations criterion, we have that the density
operator system-reservoir can be written as

〈βm|ρ̂(ss)
S⊗R|γn〉 = ρ̂

(ss)
R

(
δβGδγGδm,n

+ δβXδγXδm,n + δβGδγXδm,n+1

+ δβXδγGδm,n−1

)
ρ

(ss)
Sβm,γn. (27)

By inserting the Eq. (27) into Eq. (26), we find that
the Green’s functions operator explicitly reads

ˆ̃G(τ) = TrR

[
Û(τ)ρ̂

(ss)
R

×
∑
m

(
|Gm〉 〈Xm| rho(ss)

SXm,Xm

+ |Gm〉 〈Gm+ 1| ρ(ss)
SXm,Gm+1

)
× Û†(τ)

]
. (28)

Analogously as in section ii, we identify the nonzero
matrix elements of the Green’s functions operator
that contribute to the emission spectrum. After
performing the Laplace transform to Eq. (25), the
emission spectrum of the quantum dot is given by

S(ω) = Re
∑
l

(
G̃Gl,Xl(iω)+G̃Gl,Gl+1(iω)

)
. (29)

Taking into account that the initial conditions are
obtained by evaluating the Green’s function opera-
tor at τ = 0, we have the time evolution operators

become the identity and TrR[ρ̂
(ss)
R ] = 1, thus, we

obtain a set of initial conditions given by

G̃Gl,Xl(0) = ρ
(ss)
SXl,Xl,

G̃Gl,Gl+1(0) = ρ
(ss)
SXl,Gl+1,

G̃Xl,Xl+1(0) = 0,

G̃Gl+2,Xl(0) = 0. (30)

at the steady-state.

iv. Emission spectrum of the cavity based
on the QRT

In what follows, we apply the QRT approach for
the model of QD-cavity system described in sec-
tion III. In order to compute the emission spectrum
of the cavity, the knowledge of the two-time corre-
lation function for the field operator is required,
it is 〈â†(τ)â(0)〉 in concordance with the Eq. (1).
Moreover, by following the approach presented in
Ref. [26], it is straightforward to show that the two-
time correlation function is given by

〈â†(τ)â(0)〉 =
∑
n

√
n+ 1

(
〈â†Gn(τ)â(0)〉

+ 〈â†Xn(τ)â(0)〉
)
, (31)

where the following definitions have been used

â†Gn = |Gn+ 1〉 〈Gn| ,
â†Xn = |Xn+ 1〉 〈Xn| ,
σ̂†n = |Xn〉 〈Gn| ,
ζ̂n = |Gn+ 1〉 〈Xn− 1| . (32)

It is worth mentioning that the last two operators
should be added in order to close the dynamics of
the system accordingly to the QRT as pointed out
in section II. More precisely, we are interested in
solving the dynamical equations associated to the
expectation values 〈â†Gn(τ)â(0)〉 and 〈â†Xn(τ)â(0)〉
as a function of τ . Therefore, we need to solve a
set of coupled differential equations given by

d

dτ
〈â†Gn(τ)â(0)〉 =

∑
j

Lij〈â†Gn(τ)â(0)〉,

d

dτ
〈â†Xn(τ)â(0)〉 =

∑
j

Lij〈â†Xn(τ)â(0)〉,

d

dτ
〈σ̂†n(τ)â(0)〉 =

∑
j

Lij〈σ̂†n(τ)â(0)〉,

d

dτ
〈ζ̂n(τ)â(0)〉 =

∑
j

Lij〈ζ̂n(τ)â(0)〉.

(33)

In order to find explicitly the set of dynamical
equations and its corresponding initial conditions,
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we obtain first the set of differential equations for
the single-time expectation values for the operators
given by Eq. (32), it is explicitly

d

dτ
〈â†Gn(τ)〉 =

(
−P − i∆− nκ− κ

2
+ iωX

)
× 〈â†Gn(τ)〉+ κ

√
(n+ 1)(n+ 2)

× 〈â†Gn+1(τ)〉+ γ〈â†Xn(τ)〉

− ig
√
n〈ζ̂n(τ)〉+ ig

√
n+ 1

× 〈σ̂†n(τ)〉,
d

dτ
〈σ̂†n(τ)〉 = ig

√
n+ 1〈â†Gn(τ)〉

− ig
√
n〈â†Xn−1(τ)〉

+
1

2
(−P − γ − 2nκ+ 2iωX)

× 〈σ̂†n(τ)〉
+ (n+ 1)κ〈σ̂†n+1(τ)〉,

d

dτ
〈â†Xn−1(τ)〉 = P 〈â†Gn−1(τ)〉+ κ

√
n(n+ 1)

× 〈â†Xn(τ)〉

+ (−γ − i∆− nκ+
κ

2
+ iωX)

× 〈â†Xn−1(τ)〉+ ig
√
n+ 1〈ζ̂n(τ)〉

− ig
√
n〈σ̂†n(τ)〉,

d

dτ
〈ζ̂n(τ)〉 = −ig

√
n〈â†Gn(τ)〉+ ig

√
n+ 1

× 〈â†Xn−1(τ)〉

+ (−P
2
− γ

2
− 2i∆− nκ+ iωX)

× 〈ζ̂n(τ)〉
+

√
n(n+ 2)κ〈ζ̂n+1(τ)〉. (34)

The QRT approach implies that the follow-
ing two-time correlation functions 〈â†Gn(τ)â(0)〉,
〈â†Xn(τ)â(0)〉, 〈σ̂†n(τ)â(0)〉 and 〈ζ̂n(τ)â(0)〉 satisfy
the same dynamical equations given by Eq. (34),
subject to the initial conditions

〈â†Gn(0)â(0)〉 =
√
n+ 1ρGn+1,Gn+1(0),

〈â†Xn(0)â(0)〉 =
√
n+ 1ρXn+1,Xn+1(0),

〈σ̂†n(0)â(0)〉 =
√
n+ 1ρGn+1,Xn(0),

〈ζ̂n(0)â(0)〉 =
√
nρXn,Gn+1(0). (35)
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Figure 3: Emission spectrum of the cavity based on
the GFT as a solid blue line and the correspond-
ing numerical calculation based on the QRT as a
dashed red line. The parameters values are g = 1
meV, γ = 0.005 meV, κ = 0.2 meV, P = 0.3 meV,
∆ = 2 meV, ωa = 1000 meV.

More precisely, it is done explicitly by perform-
ing the following replacements: 〈â†Gn(τ)〉 →
〈â†Gn(τ)â(0)〉, 〈â†Xn(τ)〉 → 〈â†Xn(τ)â(0)〉,
〈σ̂†n(τ)〉 → 〈σ̂†n(τ)â(0)〉 and 〈ζ̂n(τ)〉 → 〈ζ̂n(τ)â(0)〉.
The parameters of the system ωX ,∆, g, κ, γ de-
termine the dynamics of the two-time correlation
function, as well as setting the initial conditions
that will be propagated according to the dynam-
ical equations given by Eq. (34). Since we are
interested in the light that the quantum system
emits, we have considered the steady state of the
system as the initial state into equation Eq. (35).

IV. Results and discussion

In this section, we compare the numerical calcula-
tions based on the GFT and the QRT approach for
the emission spectrum of the cavity as well as the
quantum dot. In particular, the QD-cavity sys-
tem can display two different dynamical regimes
by changing the parameters of the system and
two regimes can be achieved when the loss and
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pump rates are modified. In fact, the relation
g > |κ− γ|/4 holds for the strong coupling regime
and the relation g < |κ−γ|/4 remains valid for the
weak coupling regime. Figure 3 shows the numeri-
cal results for the emission spectrum associated to
the cavity in the strong coupling regime, where the
emission spectrum of the cavity based on the GFT
is shown as a solid blue line and the emission spec-
trum based on the QRT approach as a dashed red
line. The parameters of the system are g = 1 meV,
γ = 0.005 meV, κ = 0.2 meV, P = 0.3 meV, ∆ = 2
meV and ωa = 1000 meV. Particularly, for this set
of parameters values, we can identify two different
peaks which are associated to the energy of the cav-
ity and the quantum dot, they are ωa ≈ 998.3 meV
and ωX ≈ 1000.3 meV. We have considered the rel-
ative error as a quantitative measure of the discrep-
ancy between the GFT and the QRT approaches.
More precisely, by monitoring the numerical com-
putations of the emission spectrum, we have esti-
mated that the maximum relative error is on the
order of 10−3 in all numerical calculations that we
have performed. Similarly, the emission spectrum
of the cavity based on the GFT (solid blue line)
and the QRT approach (dashed red line) for the
strong coupling regime are shown in Fig. 4. Here,
the parameters values of the system are given by
g = 1 meV, γ = 0.005 meV, κ = 2 meV, P = 0.005
meV, ∆ = 0.0 meV and ωa = 1000 meV. Note
that we have considered the resonant case, more
precisely, the same energy values for the cavity and
the quantum dot. Here, the emission spectrums do
not match but repel each other, resulting in a struc-
ture of two separate peaks for a distance of approxi-
mately two times the coupling constant, i.e., 2g ≈ 2
meV. It is worth mentioning that this quantum ef-
fect is well-known as Rabi splitting in QD-cavity
systems. The emission spectrum of the quantum
dot in the weak coupling regime is shown in Fig. 5.
The numerical result for the emission spectrum of
the quantum dot based on the GFT is shown as
a solid blue line and the corresponding numerical
result for QRT approach is shown as a dashed red
line. We set the weak coupling regime by consider-
ing high values of the decay and pump rates κ = 5
meV and P = 1 meV, respectively. The rest of the
parameters values are g = 1 meV, γ = 0.1 meV,
∆ = 5 meV and ωa = 1000 meV. We conclude
that the method based on the GFT is in perfect
agreement with the QRT approach and reproduces
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Figure 4: Emission spectrum of the cavity based on
the GFT as a solid blue line and the corresponding
numerical calculation based on the QRT approach
as a dashed red line. The parameters values are
g = 1 meV, γ = 0.005 meV, κ = 2 meV, P = 0.005
meV, ∆ = 0 meV, ωa = 1000 meV.

very well the emission spectrum of the QD-cavity
system.

For comparison purposes with our GFT ap-
proach, we have also implemented the numerical
method based on the QRT for the QD-cavity
system (see details in section iv). In the con-
ducted simulations, we have considered the same
truncation level in the bare-state basis, e.g.,
Nexc = 10. Moreover, we have solved numerically
the dynamical equations of the system given by
the Eq. (34) until time tmax = 217 ps for obtaining
an acceptable resolution in frequency domain, it is
∆ω ≈ 0.048 meV. In order to test the performance
of the GFT approach in terms of efficiency, we
have compared the computational time involved on
the numerical calculation of the emission spectrum
of the cavity at four different excitation numbers
Nexc. Table 1 shows in first column the excitation
number. Second and third columns show the
elapsed time (CPU time) in seconds during the
simulations for the GFT and the QRT approach,
respectively. It is worth mentioning that we have
considered, for this comparison, exactly the same
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Table 1: Comparison of computational time (CPU
time) between the Green’s Functions Technique
(GFT) and the Quantum Regression Theorem
(QRT) approach for the numerical calculation of
the emission spectrum of the cavity. The computa-
tional times were made using a commercial Intel(R)
Core(TM) i7− 4770 processor of 3.4 GHz ×8, and
12 GB RAM.

Excitation CPU time(s) CPU time(s)
number (Nexc) for the GFT for the QRT

5 0.4 92.5
10 2.0 273.4
20 14.0 390.2
40 100.2 673.8

resolution in the frequency domain and the numer-
ical calculations were carried out with the same
parameters values as in Fig. 4 for both methods.
It is straightforward to observe that the QRT ap-
proach is time-consuming compared with the GFT
approach when the excitation number is increased.
From the computational point of view, it is due to
the fact that the QRT approach requires solving a
large number of coupled differential equations in
contrast to the GFT approach which requires a
relatively small system of algebraic equations.

V. Conclusions

We have presented the GFT as an alternative
methodology to the QRT approach for calculating
the two-time correlation functions in open quantum
systems. We have applied the GFT and the QRT
approach for calculating the emission spectrum in a
QD-cavity system. In particular, the performance
of the GFT in terms of accuracy and efficiency by
comparison of the emission spectrum of the cavity
and the quantum dot is demonstrated, as well as
by comparison of the computational times involved
during the numerical simulations. In fact, we have
shown that the GFT offers a computational advan-
tage, namely, the speeding up numerical calcula-
tions. We conclude that the GFT allows to over-
come the inherent theoretical difficulties presented
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Figure 5: Emission spectrum of the quantum dot
based on the GFT as a solid blue line and the corre-
sponding numerical calculation based on the QRT
approach as a dashed red line. The parameters val-
ues are κ = 5 meV, P = 1 meV, g = 1 meV, γ = 0.1
meV, ∆ = 5 meV and ωa = 1000 meV

in the QRT approach, i.e., to find a closure condi-
tion on the set of operators involved in the dynam-
ical equations. We mention that our methodology
based on the GFT can be extended for calculat-
ing the emission spectrum in significant situations
where the quantum dots are in biexcitonic regime
or when the quantum dots are coupled to photonic
cavities.
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Appendix

The emission spectrum in a QD-cavity system can
easily be computed by taking into account that the
dynamics of the operators Ĝ(τ) and ρ̂S(τ) are gov-
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erned by the same Linblad master equation, i.e.,
dĜ(τ)/dτ = LĜ(τ) with L the Liouvillian super-
operator discussed in section II. Moreover, it has
effectively a larger tensor rank than the reduced
density operator of the system. Thus, we can write
the dynamical equations for the Green’s functions
operator in a component form

dGα̃(τ)

dτ
=
∑
β̃

Lα̃β̃Gβ̃(τ), (36)

together with the initial condition Gβ̃(0). Here, the
symbol α̃ corresponds to a composite index for la-
beling the states of the reduced density operator
of the system, e.g., for indexing both matter and
photon states in the QD-cavity system, see section
III. for details. It is worth mentioning that Gβ̃
and Lα̃β̃ act as a column vector and a matrix in
this notation. In order to obtain the solution to
the Eq. (36) in frequency domain, we perform a
Laplace Transform and it explicitly takes the form
−G̃α̃(0) =

∑
β̃(Lα̃β̃ − iωδα̃β̃)G̃β̃(iω). It is straight-

forward to obtain the solution by performing the
matrix inversion to Mα̃β̃ = (iωδα̃β̃ −Lα̃β̃) and the
emission spectrum is computed easily in terms of
the initial conditions given by

G̃β̃(iω) =
∑
α̃

M−1

β̃α̃
G̃α̃(0). (37)

The initial conditions are obtained by evaluating
the Green’s function operator at τ = 0.
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