[1] H Walther et al., Cavity quantum electrodynamics, Rep. Prog. Phys. 69, 395603 (2006).

[2] A Kavokin, J J Baumberg, G Malpuech, F P Laussy, Microcavities, Oxford University Press (2007).

[3] H Altug, D Englund, J Vuckovic, Ultrafast photonic crystal nanocavity laser, Nat. Phys. 2, 484 (2006).

[4] Y Mu, C M Savage, One-atom lasers, Phys. Rev. A 46, 5944 (1992).

[5] R M Stevenson, R J Young, P Atkinson, K Cooper, D A Ritchie, A J Shields, A semiconductor source of triggered entangled photon pairs, Nature 439, 179 (2006).

[6] T M Stace, G J Milburn, C H W Barnes, Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity, Phys. Rev. B 67, 085317 (2003).

[7] N Gisin, G Ribordy, W Tittel, H Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, 145 (2002).

[8] C Monroe, Quantum information processing with atoms and photons, Nature 416, 238 (2002).

[9] Y Todorov, I Sagnes, I Abram, C Minot,Purcell enhancement of spontaneous emission from quantum cascades inside mirror-grating metal cavities at THz frequencies, Phys. Rev. Lett. 99, 223603 (2007).

[10] J Wiersig et al., Direct observation of correlations between individual photon emission events of a microcavity laser, Nature 460, 245 (2009).

[11] G Khitrova et al., Vacuum Rabi splitting in semiconductors, Nat. Phys. 2, 81 (2006).

[12] J P Reithmaier et al., Strong coupling in a single quantum dot-semiconductor microcavity system, Nature 432, 197 (2004).

[13] L Mandel, E Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, (1997).

[14] O Jedrkiewicz, R Loudon, Atomic dynamics in microcavities: absorption spectra by Green function method, J. Opt. B: Quantum S. O. Opt. 2, R47 (2000).

[15] N V Hieu, N B Ha, Time resolved luminescence of the coupled quantum dot microcavity system: general theory, Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045001 (2010).

[16] D F Walls, G J Milburn, Quantum Optics, Springer-Verlag, Berlin (1994).

[17] M Lax, Quantum Noise. IV. Quantum Theory of Noise Sources, Phys. Rev. 145, 110 (1966).

[18] S Swain, Master equation derivation of quantum regression theorem, J. Phys. A. - Math. Gen. 14, 2577 (1981).

[19] E del Valle, F P Laussy, C Tejedor, Luminescence spectra of quantum dots in microcavities. II. Fermions, Phys. Rev. B 79, 235326 (2009).

[20] N Quesada, H Vinck-Posada, B A Rodriguez, Density operator of a system pumped with polaritons: a Jaynes-Cummings-like approach, J. Phys. - Condens. Matter 23, 025301 (2011).

[21] C A Vera, N Quesada, H Vinck-Posada, BA Rodríguez, Characterization of dynamical regimes and entanglement sudden death in a microcavity quantum dot system, J. Phys.: Condens. Matter 21, 395603 (2009).

[22] N Ishida, T Byrnes, F Nori, Y Yamamoto, Photoluminescence of amicrocavity quantum dot system in the quantum strong-coupling regimes,Sci. Rep. 3 1180 (2013).

[23] T Quang, G S Agarwal, J Bergou, M O Scully, H Walther, K Vogel, W P Schleich, Calculation of the micromaser spectrum. I. Greens-function approach and approximate analytical techniques, Phys. Rev. A 48, 803 (1993).

[24] E T Jaynes, F W Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51, 89 (1963).

[25] M O Scully, M S Zubairy, Quantum Optics, Cambridge, Cambridge University Press (1996).

[26] J I Perea, D Porras, C Tejedor, Dynamics of the excitations of a quantum dot in a microcavity, Phys. Rev. B 70, 115304 (2004).

[27] H P Breuer, F Petruccione, The theory of open quantum systems, Oxford, University Press (2002).

[28] A Rivas, S F Huelga, Open Quantum Systems, Springer (2012).