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An alternative derivation of the Dirac operator generating intrinsic

Lagrangian local gauge invariance

Brian Jonathan Wolk
1∗

This paper introduces an alternative formalism for deriving the Dirac operator and equa-
tion. The use of this formalism concomitantly generates a separate operator coupled to the
Dirac operator. When operating on a Cli�ord �eld, this coupled operator produces �eld
components which are formally equivalent to the �eld components of Maxwell's electro-
magnetic �eld tensor. Consequently, the Lagrangian of the associated coupled �eld exhibits
internal local gauge symmetry. The coupled �eld Lagrangian is seen to be equivalent to
the Lagrangian of Quantum Electrodynamics.

I. Introduction

The Dirac equation [1] arises from a Lagrangian
which lacks local gauge symmetry [2�6]. In the
usual quantum �eld theoretic development, local
gauge invariance is thus made an external condi-
tion of and on the Lagrangian [3�6]. Introduction
of a vector �eld Aµ that couples to the Dirac �eld
ψ must then be introduced in order to satisfy the
imposed local symmetry constraint [2�4].

More satisfactory from a theoretic standpoint
would be a formalism in which derivation of the
Dirac operator equation is associated with a La-
grangian exhibiting internal local gauge symmetry.
Such a formalism would alleviate both the need to
impose local gauge invariance as an external man-
date as well as the need to invent and introduce
a vector �eld to satisfy the constraint. Symmetry
would exist ab initio. This paper presents such an
approach and derivation.

∗E-mail: attorneywolk@gmail.com

1 3551 Blairstone Road, Tallahassee, FL 32301 Suite 105,
USA.

II. Alternative formalism

i. The standard approach

One consequence of the standard approach [1�6,
8, 20] in deriving the Dirac operator �∂ ≡ γα∂

α =
γ0∂/∂t−γ ·∇, with γ = (γ1, γ2, γ3), which is related
to the d'Alembertian operator � ≡ ∂µ∂µ associated
with the Klein-Gordon equation �ψ = −M2ψ [2�
6,20], is that Cli�ord-Dirac elements {γµ} arise as
necessary structures of the Dirac operator �∂, with
the following properties [2�6,8, 10,21]

γα = gαδγδ; γµγ
µ = 4 (1)

γnγm = −γmγn(n 6= m)

(γn)
2

= −1;
(
γ0

)2
= 1

(γµ)
†

= γ0γµγ0 (γn)
†

= −γn

� = �∂
2 .

Dirac's equation �∂ψ = ±iMψ follows for a
fermionic �eld ψ such as the electron [2�6,21].
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ii. An alternate formalism

Two conditions are set forth for developing an al-
ternative formalism for deriving an operator, call it
O, which operates on the wave function ψ for the
subject fermionic particle and generates the equa-
tion governing its evolution.
The �rst condition is that since the wave func-

tion ψ is a spinor, the Cli�ord elements must act,
if at all, as operators on it [8, 13, 20]. Therefore,
the applicable operator O should contain Cli�ord
algebra elements.
The second condition is that � should be deriv-

able from O [2, 4, 6];1 there must exist a mapping
z : O → �, and thus the governing equation itself
must satisfy2

z(O)ψ = z(±iM)ψ −→ �ψ = −M2ψ. (2)

To satisfy the d'Alembertian condition that z :
O → �, the mapping must make use of the par-
tial derivative operators, and so the operator ∂ ≡
(∂/∂t,∇) is de�ned. To meet the Cli�ord condi-
tion that O contains Cli�ord elements, the oper-
ator η ≡ (γ0, γ) is put. Written explicitly, these
fundamental operators are

∂ = ∂/∂t+ i∂/∂x+ j∂/∂y + k∂/∂z, (3)

and

η = γ0 + iγ1 + jγ2 + kγ3. (4)

We wish to use these fundamental operators in
constructing O. To do so, use is made of the equiv-
alence between the ring of quaternions H with ba-
sis (1, i, j, k) and R4 - the four-dimensional vec-
tor space over the real numbers: {q ∈ H : q =
u01 + bi + cj + dk|u0, b, c, d ∈ R} [10�12, 14], with
i2 = j2 = k2 = −1. The quaternion q can
then be divided into its scalar and vector portions:
{q = (u0, u) |u0 ∈ R, u ∈ R3} [11, 12,14].

1A condition also imposed by Dirac. Ref. [2], p. 86.
2Putting z (±iM) = −M2 in Eq. (2) presumes that the

form and domain of the mapping z is known. The more
general relation would be z (f [M ]) = −M2, with f [M ] =
±iM to be subsequently deduced. But once the form of O is
discovered, the form of z becomes evident, namely z = []2,
and deducing f [M ] becomes trivial. Additionally however,
given the fact that the RHS of Eq. (2) involves a square,
one can intuit the correct form for z in the �rst instance.

In this way, the operators given in (3) and (4) can
be conceived as quaternionic operators, with the
relations between the quaternionic basis elements
and the Cli�ord elements being [11,13]

1 = γ0γ0, i = γ2γ3, j = γ3γ1, k = γ1γ2. (5)

The γµ are then the �rst-order, primary entities
[8,10,20] from which the quaternionic basis is con-
structed.3

To generate a new operator using the fundamen-
tal operators, the product η∂ is taken. The prod-
uct of two quaternionic operators v = (v0, v) and
w = (w0, w) may be written as a product of their
scalar and vector components in the R4 represen-
tation using the formula

(v0, v)(w0, w) = (v0w0 − ~v · ~w, v0 ~w + ~vw0 + ~v × ~w),
(6)

where v → ~v, and w → ~w [10�14]. This gives

η∂ ≡ (γ0, γ)(∂/∂t,∇), (7)

producing the operator

η∂ ≡([η∂]0, [η∂]∧) (8)

=(γ0∂/∂t− γ · ∇, γ0∇+ γ∂/∂t+ γ ×∇).

The operator η∂ is composed of two coupled
operators (and thus will operate on two coupled
�elds). Its �rst component operator is

[η∂]0 = γ0∂/∂t− γ · ∇. (9)

Setting z = []
2
gives a mapping z : [η∂]0 → �.

This mapping satis�es Eq. (2) [6, 20]. The opera-
tor [η∂]0 thus satis�es both the d'Alembertian and
Cli�ord conditions. Putting [η∂]0 = O and noting
the obvious equivalence O ≡ �∂, the Dirac operator

is thus seen to be derived from the new formalism.
Given Eq. (2), we have Oψ = ±iMψ as a possi-

ble fermion �eld equation of motion. As any solu-
tion to Oψ = ±iMψ is also a solution to the Klein-
Gordon equation [2,6,21], this equation is naturally
postulated as governing a fermionic particle such as
the electron.

3Note is made that η = γ0γ0γ0 + γ1γ2γ3 + γ1γ2γ3 +
γ1γ2γ3.
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III. The coupled operator

A new operator which is coupled to �∂ is seen to
arise within this formalism. This operator is the
vector component of η∂ in Eq. (8), namely

[η∂]∧ = γ0∇+ γ∂/∂t+ γ ×∇. (10)

To maintain consistency with the formalism used
with �∂, the operator [η∂]∧ is also written in the γµ-

basis. Designating this operator as��c we have

[η∂]∧ →��c = γ0(̂i∂/∂x+ ĵ∂/∂y + k̂∂/∂z)

+ γ1(̂i∂/∂t− ĵ∂/∂z + k̂∂/∂y)

+ γ2(̂i∂/∂z + ĵ∂/∂t− k̂∂/∂x)

+ γ3(−î∂/∂y + ĵ∂/∂x+ k̂∂/∂t). (11)

Since the operators
(
�∂,��c

)
are coupled, when �∂

operates on some �eld so should ��c. Inspection of

Eq. (11) shows that ��c's operation must be of a
di�erent sort and on a di�erent yet coupled �eld.

To see how��c operates and on what, some notation
is �rst required.
A = A0(x) + A1(x)̂i + A2(x)ĵ + A3(x)k̂ repre-

sents a four-vector �eld, for which we can associate
the Cli�ord �eld �A = Aµγ

µ, with Aµ ≡ Aµ(x)
being the �eld components of A. There is thus a
component-wise bijection between�A and A.
A Cli�ord vector �eld is de�ned as �C = Cµγµ,

with eachCµ being its own vector �eld. In this way,
a general Cli�ord vector �eld operator is de�ned as

��4 = 4αγα, with each component4α being its own
vector �eld operator.
In standard vector analysis, vector �eld operators

operate on scalar �elds [15]. Following suit, in order
for a Cli�ord vector �eld operator's (��4) component
vector �eld operators (4α) to operate on the scalar
�elds Aµ of a Cli�ord �eld�A, an operation · must
be de�ned such that

��4 ·�A = 4µγµγµAµ = 4µAµ = 4µAνgµν . (12)

Using this formalism, the componentsc
α
of��c are

given by Eq. (11).4 Choosing a Cli�ord �eld of the
general form

4For instance, c
0
= ∇.

�Φ ≡ γµΦµ = γ0Φ0 + γ1Φ1 + γ2Φ2 + γ3Φ3, (13)

with Φµ ≡ Φµ(x), and operating on�Φ with��c gives

��c ·�Φ = (̂i∂/∂x+ ĵ∂/∂y + k̂∂/∂z)Φ0

+ (̂i∂/∂t− ĵ∂/∂z + k̂∂/∂y)Φ1

+ (̂i∂/∂z + ĵ∂/∂t− k̂∂/∂x)Φ2

+ (−î∂/∂y + ĵ∂/∂x+ k̂∂/∂t)Φ3. (14)

We have then the coupled �eld (ψ,Φµ) through
action of the operator η∂. Unlike ψ, the Φµ are
not 4-element column matrices and are not spinor
�elds, since operating through in Eq. (14) excises
the Cli�ord elements. Rearranging terms give the
following set of six vector �eld components:

(∂Φ0/∂x+ ∂Φ1/∂t)̂i

(∂Φ0/∂y + ∂Φ2/∂t)ĵ

(∂Φ0/∂z + ∂Φ3/∂t)k̂

(∂Φ2/∂z − ∂Φ3/∂y)̂i

(∂Φ3/∂x− ∂Φ1/∂z)ĵ

(∂Φ1/∂y − ∂Φ2/∂x)k̂ (15)

These equations can be identi�ed with the compo-
nents of two vector �elds

X = −∇Φ0 − ∂~Φ/∂t (16)

and

Y = ∇× ~Φ, (17)

with ~Φ = (Φ1,Φ2,Φ3). These equations repre-
sent the six independent components of an anti-

symmetric �eld tensor H, which ��c ·�Φ has gener-
ated. There is thus a one-to-one and onto corre-
spondence: {±��c ·�Φ ↔ H}. Therefore, H can be
written as the curl of the Cli�ord scalar �eld com-
ponents

Hµν ≡ ∂µΦν − ∂νΦµ. (18)

H is then formally equivalent to the electro-
magnetic �eld tensor [6, 16, 19, 22]. Using the
component-wise bijection stated above: {�A↔ A},
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the components of�Φ are identi�ed with the com-
ponents of the electromagnetic potential vector A:
Aµ ≡ Φµ. This being the case, Aµ

5 represents a
massless vector �eld (the photon) abiding by the
gauge invariance condition [2, 3, 6, 9, 17�19,22]

Aµ −→ Aµ + ∂µλ. (19)

i. The coupled locally gauge symmetric La-

grangian

The gauge invariance condition, Eq. (19), can be
exploited to impose an additional constraint on the
potential Aµ, namely the Lorenz condition ∂µA

µ =
0 [2, 6].6 With the aid of the Lorenz gauge, the
Lagrangian for the �eld Aµ with source Jµ [2,6,18]
can be written as

LAµ
= − 1

16π
HµνHµν −

1

c
JµAµ. (20)

The Lagrangian for the Dirac �eld ψ is given by
[2, 6]

Lψ = i~cψγµ∂µψ −mc2ψψ. (21)

While exhibiting global gauge invariance, the Dirac
Lagrangian Lψ is not locally gauge invariant [2�
6]. The usual quantum �eld theoretic approach is
to mandate local gauge symmetry [3, 6], thereby
requiring subsequent introduction of a new vector
�eld Aµ in order to meet this mandate [2�6]. The
current formalism does not require such a method.
The Lagrangian for the coupled �eld is thus

L(ψ,Aµ) ≡Lψ + LAµ

=[i~cψγµ∂µψ −mc2ψψ]

− 1

16π
HµνHµν − (eψγµψ)Aµ, (22)

where ceψγµψ = Jµ is the quantum �eld current
density satisfying the conservation equation [2,6,7]

∂µJ
µ = 0. (23)

This is an important result; for the conserva-
tion equation is a consequence of the intrinsic

5Where Aµ is now taken to represent the electromagnetic
four-vector potential.

6This gauge condition is often incorrectly referred to as
the Lorentz condition, vice the correct attribution as the
Lorenz condition [23].

gauge symmetry of L(ψ,Aµ), since J
µ is simply the

Noether current corresponding to the local phase
transformation ψ → eiα(x)ψ concomitant with Eq.
(19) as part of the local gauge invariance trans-
formation [21]. As the Ward identity, given by
kµMµ (k) = 0, is an expression which results from
this current conservation,7 it follows that the Ward
identity is intrinsically manifest as well in the cur-
rent formalism as a consequence of the inherent lo-
cal gauge symmetry of the Lagrangian.8

The form of the interaction term (eψγµψ)Aµ of
L(ψ,Aµ) arises naturally in this formalism. An in-
trinsically coupled �eld must have a coupling pa-
rameter - in this case e, the electric charge - and a
Lagrangian interaction term [2,3,6]. Further, in rel-
ativistic quantum mechanics, the probability cur-
rent ψγµψ takes the role of the conserved current
Jµ of the wave function ψ [2, 7, 21]. It is natural
then to integrate the coupling parameter along with
the probability current into the interaction term of
Eq. (20). This results in the selfsame interaction
term found via the standard derivation through im-
posed local gauge symmetry [2, 6, 21,22].

L(ψ,Aµ) is locally gauge invariant [2, 3, 6, 7, 22].
The alternative formalism thus produces a coupled
�eld (ψ,Aµ) which is represented by an internally
local gauge symmetric Lagrangian. There is no
need then to either mandate local gauge invariance
or thereafter to introduce an external �eld to meet
the mandate, as both are inherent to the formalism;
symmetry exists from inception.

Lastly, it is seen that L(ψ,Aµ) ≡ LQED, the La-
grangian of Quantum Electrodynamics.9 In canon-
ically quantizing the theory this equivalence of La-
grangians is conditioned on modi�cation of the

7Ref. [21], sections 5.5 and 7.4. Where M (k) =
εµ(k)Mµ(k) is the amplitude for some quantum electrody-
namic process involving an external photon with momentum
k.

8Ref. [2], section 13.2.4 (Local gauge invariance←→ cur-
rent conservation ←→ Ward identities).

9This paper does not contemplate the Yang-Mills gener-
alization and extension of gauge invariance to non-abelian
groups such as U(1)⊗ SU(2) of the weak interaction or quan-
tum chromodynamic's SU(3) [21, 22], but only a formalism
for an intrinsic local U(1) symmetry of QED. Therefore, such
symmetries as the Becchi, Rouet, Stora and Tyutin (BRST)
symmetry which is typically covered in quantization of non-
abelian gauge theories is not addressed herein, but is left
to the possible extension of this paper's formalism to such
non-abelian generalizations with their associated invariant
full e�ective Lagrangians [22].
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Lorenz condition relied on above in generating
LAµ

. For the canonically quantized formalism,
Gupta-Bleuler's weak Lorenz condition given by
∂µA

µ+ |Ψ〉 = 0 replaces the Lorenz condition, in
which Aµ+ acts as the photon lowering quantum
�eld operator and |Ψ〉 represents a ket of any num-
ber of photons [2,21,22].10 It follows from this con-
ditioned equivalence that the new formalism gener-
ates all of electrodynamics and speci�es the current
produced by the subject Dirac �elds [2, 3, 6, 21].11

IV. Conclusion

Local gauge symmetry plays the central, dominant
role in modern �eld theory [22]. That being the
case, it would be preferable that the intrinsic struc-
ture of fundamental physical theories exhibit this
symmetry ab initio. Therefore, a formalism which
produces the Dirac operator equation exhibiting in-
herent local gauge invariance while also jettisoning
the need for invention of an auxiliary vector �eld in
order to satisfy an imposed symmetry constraint is
more satisfying from a theoretic standpoint. This
paper's formalism achieves such an internal local
symmetry, and in doing so naturally generates the
fundamental equations of Quantum Electrodynam-
ics. Such a uni�ed description of these basic equa-
tions and their processes may also lead to a deeper
understanding of the origin of these phenomena.
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