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SIR epidemics in monogamous populations with recombination

Damián H. Zanette1∗

We study the propagation of an SIR (susceptible–infectious–recovered) disease over an
agent population which, at any instant, is fully divided into couples of agents. Couples
are occasionally allowed to exchange their members. This process of couple recombination
can compensate the instantaneous disconnection of the interaction pattern and thus allow
for the propagation of the infection. We study the incidence of the disease as a function of
its infectivity and of the recombination rate of couples, thus characterizing the interplay
between the epidemic dynamics and the evolution of the population’s interaction pattern.

I. Introduction

Models of disease propagation are widely used to
provide a stylized picture of the basic mechanisms
at work during epidemic outbreaks and infection
spreading [1]. Within interdisciplinary physics,
they have the additional interest of being closely re-
lated to the mathematical representation of such di-
verse phenomena as fire propagation, signal trans-
mission in neuronal axons, and oscillatory chemical
reactions [2]. Because this kind of model describes
the joint dynamics of large populations of interact-
ing active elements or agents, its most interesting
outcome is the emergence of self-organization. The
appearance of endemic states, with a stable finite
portion of the population actively transmitting an
infection, is a typical form of self-organization in
epidemiological models [3].

Occurrence of self-organized collective behavior
has, however, the sine qua non condition that in-
formation about the individual state of agents must
be exchanged between each other. In turn, this re-
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quires the interaction pattern between agents not
to be disconnected. Fulfilment of such requirement
is usually assumed to be granted. However, it is
not difficult to think of simple scenarios where it
is not guaranteed. In the specific context of epi-
demics, for instance, a sexually transmitted infec-
tion never propagates in a population where sex-
ual partnership is confined within stable couples or
small groups [4].

In this paper, we consider an SIR (susceptible–
infectious–recovered) epidemiological model [3] in
a monogamous population where, at any instant,
each agent has exactly one partner or neighbor
[4, 5]. The population is thus divided into cou-
ples, and is therefore highly disconnected. How-
ever, couples can occasionally break up and their
members can then be exchanged with those of other
broken couples. As was recently demonstrated for
SIS models [6, 7], this process of couple recombi-
nation can compensate to a certain extent the in-
stantaneous lack of connectivity of the population’s
interaction pattern, and possibly allow for the prop-
agation of the otherwise confined disease. Our main
aim here is to characterize this interplay between
recombination and propagation for SIR epidemics.

In the next section, we review the SIR model and
its mean field dynamics. Analytical results are then
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provided for recombining monogamous populations
in the limits of zero and infinitely large recombina-
tion rate, while the case of intermediate rates is
studied numerically. Attention is focused on the
disease incidence –namely, the portion of the pop-
ulation that has been infectious sometime during
the epidemic process– and its dependence on the
disease infectivity and the recombination rates, as
well as on the initial number of infectious agents.
Our results are inscribed in the broader context of
epidemics propagation on populations with evolv-
ing interaction patterns [4, 5, 8–11].

II. SIR dynamics and mean field de-
scription

In the SIR model, a disease propagates over a pop-
ulation each of whose members can be, at any given
time, in one of three epidemiological states: suscep-
tible (S), infectious (I), or recovered (R). Suscep-
tible agents become infectious by contagion from
infectious neighbors, with probability λ per neigh-
bor per time unit. Infectious agents, in turn, be-
come recovered spontaneously, with probability γ
per time unit. The disease process S → I → R
ends there, since recovered agents cannot be in-
fected again [3].

With a given initial fraction of S and I–agents,
the disease first propagates by contagion but later
declines due to recovery. The population ends in
an absorbing state where the infection has disap-
peared, and each agent is either recovered or still
susceptible. In this respect, SIR epidemics dif-
fers from the SIS and SIRS models, where –due
to the cyclic nature of the disease,– the infection
can asymptotically reach an endemic state, with a
constant fraction of infectious agents permanently
present in the population.

Another distinctive equilibrium property of SIR
epidemics is that the final state depends on the
initial condition. In other words, the SIR model
possesses infinitely many equilibria parameterized
by the initial states.

In a mean field description, it is assumed that
each agent is exposed to the average epidemiolog-
ical state of the whole population. Calling x and
y the respective fractions of S and I–agents, the
mean field evolution of the disease is governed by

the equations

ẋ = −kλxy,
ẏ = kλxy − y,

(1)

where k is the average number of neighbors per
agent. Since the population is assumed to re-
main constant in size, the fraction of R–agents is
z = 1 − x − y. In the second equation of Eqs.
(1), we have assigned the recovery frequency the
value γ = 1, thus fixing the time unit equal to γ−1,
the average duration of the infectious state. The
contagion frequency λ is accordingly normalized:
λ/γ → λ. This choice for γ will be maintained
throughout the remaining of the paper.

The solution to Eqs. (1) implies that, from an
initial condition without R–agents, the final frac-
tion of S–agents, x∗, is related to the initial fraction
of I–agents, y0, as [1]

x∗ = 1− (kλ)−1 log[(1− y0)/x∗]. (2)

Note that the final fraction of R–agents, z∗ = 1 −
x∗, gives the total fraction of agents who have been
infectious sometime during the epidemic process.
Thus, z∗ directly measures the total incidence of
the disease.

The incidence z∗ as a function of the infectiv-
ity kλ, obtained from Eq. (2) through the stan-
dard Newton–Raphson method for several values
y0 of the initial fraction of I–agents, is shown in
the upper panel of Fig. 1. As expected, the dis-
ease incidence grows both with the infectivity and
with y0. Note that, on the one hand, this growth
is smooth for finite positive y0. On the other hand,
for y0 → 0 (but y0 6= 0) there is a transcritical
bifurcation at kλ = 1. For lower infectivities, the
disease is not able to propagate and, consequently,
its incidence is identically equal to zero. For larger
infectivities, even when the initial fraction of I–
agents is vanishingly small, the disease propagates
and the incidence turns out to be positive. Finally,
for y0 = 0 no agents are initially infectious, no in-
fection spreads, and the incidence thus vanishes all
over parameter space.

III. Monogamous populations with
couple recombination

Suppose now that, at any given time, each agent
in the population has exactly just one neighbor or,
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Figure 1: SIR epidemics incidence (measured by
the final fraction of recovered agents z∗) as a func-
tion of the infectivity (measured by the product
of the mean number of neighbors times the infec-
tion probability per time unit per infected neigh-
bor, kλ), for different initial fractions of infec-
tious agents, y0. Upper panel: For the mean field
equations (1). Lower panel: For a static (non-
recombining) monogamous population, described
by Eqs. (3) with r = 0.

in other words, that the whole population is al-
ways divided into couples. In reference to sexually
transmitted diseases, this pattern of contacts be-
tween agents defines a monogamous population [5].
If each couple is everlasting, so that neighbors do
not change with time, the disease incidence should
be heavily limited by the impossibility of propagat-
ing too far from the initially infectious agents. At
most, some of the initially susceptible agents with
infectious neighbors will become themselves infec-
tious, but spontaneous recovery will soon prevail
and the disease will disappear.

If, on the other hand, the population remains
monogamous but neighbors are occasionally al-
lowed to change, any I–agent may transmit the
disease several times before recovering. If such
changes are frequent enough, the disease could per-
haps reach an incidence similar to that predicted by
the mean field description, Eq. (1) (for k = 1, i.e.
with an average of one neighbor per agent).

We model neighbor changes by a process of cou-
ple recombination where, at each event, two cou-
ples (i, j) and (m,n) are chosen at random and
their partners are exchanged [6, 7]. The two pos-
sible outcomes of recombination, either (i,m) and
(j, n) or (i, n) and (j, m), occur with equal prob-
ability. To quantify recombination, we define r as
the probability per unit time that any given couple
becomes involved in such an event.

A suitable description of SIR epidemics in
monogamous populations with recombination is
achieved in terms of the fractions of couples of
different kinds, mSS, mSI, mII, mIR, mRR, and
mSR = 1 − mSI − mII − mIR − mRR. Evolution
equations for these fractions are obtained by con-
sidering the possible transitions between kinds of
couples due to recombination and epidemic events
[7]. For instance, partner exchange between two
couples (S,S) and (I,R) which gives rise to (S,I)
and (S,R), contributes positive terms to the time
derivative of mSI and mSR, and negative terms to
those of mSS and mIR, all of them proportional to
the product mSSmIR. Meanwhile, for example, con-
tagion can transform an (S,I)–couple into an (I,I)–
couple, with negative and positive contributions to
the variations of the respective fractions, both pro-
portional to mSI.

The equations resulting from these arguments
read

ṁSS = rASIR,
ṁSI = rBSIR − (1 + λ)mSI,
ṁII = rAIRS + λmSI − 2mII,
ṁIR = rBIRS + 2mII −mIR,
ṁRR = rARSI + mIR,
ṁSR = rBRSI + mSI.

(3)

For brevity, we have here denoted the contribution
of recombination by means of the symbols

Aijh ≡ (mij+mih)2/4−mii(mjj+mjh+mhh), (4)
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and

Bijh ≡ (2mii + mih)(2mjj + mjh)/2
−mij(mij + mih + mjh + mhh)/2, (5)

with i, j, h ∈ {S, I,R}. The remaining terms stand
for the epidemic events. In terms of the couple
fractions, the fractions of S, I and R–agents are
expressed as

x = mSS + (mSI + mSR)/2,
y = mII + (mSI + mIR)/2,
z = mRR + (mSR + mIR)/2.

(6)

Assuming that the agents with different epidemi-
ological states are initially distributed at random
over the pattern of couples, the initial fraction of
each kind of couple is mSS(0) = x2

0, mSI(0) =
2x0y0, mII(0) = y2

0 , mIR(0) = 2y0z0, mRR(0) = z2
0 ,

and mSR(0) = 2x0z0, where x0, y0 and z0 are the
initial fractions of each kind of agent.

It is important to realize that the mean field–like
Eqs. (3) to (6) are exact for infinitely large popula-
tions. In fact, first, pairs of couples are selected at
random for recombination. Second, any epidemic
event that changes the state of an agent modifies
the kind of the corresponding couple, but does not
affect any other couple. Therefore, no correlations
are created by either process.

In the limit without recombination, r = 0, the
pattern of couples is static. Equations (3) become
linear and can be analytically solved. For asymp-
totically long times, the solution provides –from the
third of Eqs. (6)– the disease incidence as a func-
tion of the initial condition. If no R–agents are
present in the initial state, the incidence is

z∗ = (1 + λ)−1[1 + λ(2− y0)]y0. (7)

This is plotted in the lower panel of Fig. 1 as a
function of the infectivity kλ ≡ λ, for various val-
ues of the initial fraction of I–agents, y0. When
recombination is suppressed, as expected, the in-
cidence is limited even for large infectivities, since
disease propagation can only occur to susceptible
agents initially connected to infectious neighbors.
Comparison with the upper panel makes apparent
substantial quantitative differences with the mean
field description, especially for small initial frac-
tions of I–agents.

Another situation that can be treated analyti-
cally is the limit of infinitely frequent recombina-
tion, r →∞. In this limit, over a sufficiently short
time interval, the epidemiological state of all agents
is virtually “frozen” while the pattern of couples
tests all possible combinations of agent pairs. Con-
sequently, at each moment, the fraction of couples
of each kind is completely determined by the in-
stantaneous fraction of each kind of agent, namely,

mSS = x2, mSI = 2xy, mII = y2,
mIR = 2yz, mRR = z2, mSR = 2xz.

(8)

These relations are, of course, the same as quoted
above for uncorrelated initial conditions.

Replacing Eqs. (8) into (3) we verify, first, that
the operators Aijh and Bijh vanish identically. The
remaining of the equations, corresponding to the
contribution of epidemic events, become equivalent
to the mean field equations (1). Therefore, if the
distributions of couples and epidemiological states
are initially uncorrelated, the evolution of the frac-
tion of couples of each kind is exactly determined
by the mean field description for the fraction each
kind of agent, through the relations given in Eqs.
(8).

For intermediate values of the recombination
rate, 0 < r < ∞, we expect to obtain incidence lev-
els that interpolate between the results presented
in the two panels of Fig. 1. However, these can-
not be obtained analytically. We thus resort to the
numerical solution of Eqs. (3).

IV. Numerical results for recombin-
ing couples

We solve Eqs. (3) by means of a standard fourth-
order Runge-Kutta algorithm. The initial condi-
tions are as in the preceding section, representing
no R–agents and a fraction y0 of I–agents. The dis-
ease incidence z∗ is estimated from the third equa-
tion of Eqs. (6), using the long-time numerical so-
lutions for mRR, mSR, and mIR. In the range of
parameters considered here, numerical integration
up to time t = 1000 was enough to get a satisfac-
tory approach to asymptotic values.

Figure 2 shows the incidence as a function of in-
fectivity for three values of the initial fraction of
I–agents, y0 → 0, y0 = 0.2 and 0.6, and several
values of the recombination rate r. Numerically,
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Figure 2: SIR epidemics incidence as a function
of the infectivity for three initial fractions of infec-
tious agents, y0, and several recombination rates,
r. Mean field (m. f.) results are also shown. The
insert in the upper panel displays the boundary be-
tween the phases of no incidence and positive inci-
dence for y0 → 0, in the parameter plane of infec-
tivity vs. recombination rate.

the limit y0 → 0 has been represented by taking
y0 = 10−9. Within the plot resolution, smaller val-
ues of y0 give identical results. Mean field (m. f.)
results are also shown. As expected from the an-
alytical results presented in the preceding section,

positive values of r give rise to incidences between
those obtained for a static couple pattern (r = 0)
and for the mean field description. Note that sub-
stantial departure from the limit of static couples
is only got for relatively large recombination rates,
r > 1, when at least one recombination per cou-
ple occurs in the typical time of recovery from the
infection.

Among these results, the most interesting situa-
tion is that of a vanishingly small initial fraction of
I–agents, y0 → 0. Figure 3 shows, in this case, the
epidemics incidence as a function of the recombi-
nation rate for several fixed infectivities. We recall
that, for y0 → 0, the mean field description predicts
a transcritical bifurcation between zero and posi-
tive incidence at a critical infectivity λ = 1, while
in the absence of recombination the incidence is
identically zero for all infectivities. Our numerical
calculations show that, for sufficiently large values
of r, the transition is still present, but the criti-
cal point depends on the recombination rate. As
r grows to infinity, the critical infectivity decreases
approaching unity.

Figure 3: SIR epidemics incidence as a function
of the recombination rate r for a vanishingly small
fraction of infectious agents, y0 → 0, and several
infectivities λ.

Straightforward linearization analysis of Eqs. (3)
shows that the state of zero incidence becomes un-
stable above the critical infectivity

λc =
r + 1
r − 1

. (9)
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This value is in excellent agreement with the nu-
merical determination of the transition point. Note
also that Eq. (9) predicts a divergent critical infec-
tivity for a recombination rate r = 1. This implies
that, for 0 ≤ r ≤ 1, the transition is absent and
the disease has no incidence irrespectively of the
infectivity level. For y0 → 0, thus, the recombina-
tion rate must overcome the critical value rc = 1
to find positive incidence for sufficiently large infec-
tivity. The critical line between zero and positive
incidence in the parameter plane of infectivity vs.
recombination rate, given by Eq. (9), is plotted in
the insert of the upper panel of Fig. 2.

V. Conclusions

We have studied the dynamics of SIR epidemics in
a population where, at any time, each agent forms a
couple with exactly one neighbor, but neighbors are
randomly exchanged at a fixed rate. As it had al-
ready been shown for the SIS epidemiological model
[6,7], this recombination of couples can, to some de-
gree, compensate the high disconnection of the in-
stantaneous interaction pattern, and thus allow for
the propagation of the disease over a finite portion
of the population. The interest of a separate study
of SIR epidemics is based on its peculiar dynamical
features: in contrast with SIS epidemics, it admits
infinitely many absorbing equilibrium states. As
a consequence, the disease incidence depends not
only on the infectivity and the recombination rate,
but also on the initial fraction of infectious agents
in the population.

Due to the random nature of recombination,
mean field–like arguments provide exact equations
for the evolution of couples formed by agents in
every possible epidemiological state. These equa-
tions can be analytically studied in the limits of
zero and infinitely large recombination rates. The
latter case, in particular, coincides with the stan-
dard mean field description of SIR epidemics.

Numerical solutions for intermediate recombina-
tion rates smoothly interpolate between the two
limits, except when the initial fraction of infectious
agents is vanishingly small. For this special situ-
ation, if the recombination rate is below one re-
combination event per couple per time unit (which
equals the mean recovery time), the disease does
not propagate and its incidence is thus equal to

zero. Above that critical value, a transition ap-
pears as the disease infectivity changes: for small
infectivities the incidence is still zero, while it be-
comes positive for large infectivities. The critical
transition point shifts to lower infectivities as the
recombination rate grows.

It is worth mentioning that a similar transition
between a state with no disease and an endemic
state with a permanent infection level occurs in SIS
epidemics with a vanishingly small fraction of in-
fectious agents [6, 7]. For this latter model, how-
ever, the transition is present for any positive re-
combination rate. For SIR epidemics, on the other
hand, the recombination rate must overcome a crit-
ical value for the disease to spread, even at very
large infectivities.

While both the (monogamous) structure and the
(recombination) dynamics of the interaction pat-
tern considered here are too artificial to play a role
in the description of real systems, they correspond
to significant limits of more realistic situations.
First, the monogamous population represents the
highest possible lack of connectivity in the interac-
tion pattern (if isolated agents are excluded). Sec-
ond, random couple recombination preserves the
instantaneous structure of interactions and does
not introduce correlations between the individual
epidemiological state of agents. As was already
demonstrated for SIS epidemics and chaotic syn-
chronization [7], they have the additional advan-
tage of being analytically tractable to a large ex-
tent. Therefore, this kind of assumption promises
to become a useful tool in the study of dynamical
processes on evolving networks.
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