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Application of multifractal analysis to segmentation of water bodies in
optical satellite images

V. M. San Martin,1,2∗A. Figliola1,2†

In this paper, we study the characteristics of multifractal spectra obtained for remote
sensing images through the coarse theory and propose a method for segmentation of water
bodies based on it.
In the first place, spectra of self-similar images created with Iterated Function Systems
are calculated and compared with their statistical spectra. Then, optical remote sensing
images are studied, emphasizing the differences between their spectra and those obtained
for synthetic images. Attention is focused on the concavity of real image spectra and on
its interpretation in terms of the analyzed images. This led us to the proposition of a
segmentation method for water bodies.
The method is tested and the results are compared with water masks of the regions under
study. Comments are made about the limitations of the proposed method.

I. Introduction

Fractal theory was initially proposed by Mandel-
brot [1] and extensively developed up to these days
[2–5]. Multifractal theory can be seen as an ex-
tension of fractal formalism, centered in subsets
with different scaling behavior coexisting simulta-
neously. Since its introduction, multifractal analy-
sis has been developed and applied in a wide range
of disciplines, like medicine [6], neuroscience [7],
economy [8–10], ecology [11] and theoretical physics
[12–14]. Many methods have been proposed for ap-
proximating multifractal spectra. A summary of
the most important ones can be found in [15].
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Particularly, multifractal analysis has been used
via different formalisms to extract information from
images.

In a series of three articles, Arneodo et al. [16–18]
develop a multifractal analysis method for images
based on wavelet coefficients. Their approach leads
to a multifractal spectra expressed in terms of
Hölder exponent for functions, a solid way of study-
ing singularities. However, the present work leads
to using Hölder exponent for measures. Despite the
fact that there are theoretical connections between
those spectra, the passage from one to the other
is not straightforward, making any comparison of
numerical results quite complicated. Nevertheless,
it is interesting to see how those singularity spectra
are useful for characterizing captures with diverse
textures. In [16], the authors propose performing
a multifractal analysis of images through the so-
called wavelet transform modulus maxima method
and testing it in random self-affine surfaces. In [17],
this group applies the proposed formalism to mul-
tifractal synthetic images simulating cloud struc-
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tures, while in [18], they utilize it on Landsat im-
ages with cloud cover.

In a similar line, Wendt et al. present the use of
wavelet leaders for studying regularity and obtain-
ing the multifractal spectra of images with different
textures [19].

In a classical article, Lévy Véhel and Mignot [20]
characterize different types of 2D singularities via
Hölder exponents for the sum measure and various
capacities. Once the response of these exponents to
the singularities is studied, the authors use them to
obtain the edges in both, synthetic and real images.

Multifractal analysis based on measures has also
been applied to medical images. Nilsson [21] stud-
ies the possibility of using this methodology to dis-
tinguish healthy tissue from a potentially tumoral
one based on the differences in the width of the cor-
responding spectra. Vasiljevic et al. [22] use partic-
ular parameters of multifractal analysis, like some
generalized dimensions or the range of Hölder ex-
ponents, for classifying the primary cancer in cases
of metastasis bone disease.

Millán et al. [23] also pay attention to several se-
lected parameters estimated from multifractal spec-
tra and use them together with a log-Levy stable
model for characterizing soil surface moisture dis-
tributions. In geophysics, Posadas et al. [24] char-
acterize the dynamics of preferential water flow in
soils and porous media with some particular pa-
rameters of multifractal spectra of MRI data. In
engineering, multifractal spectra has been proposed
as a method for evaluating the integrity of concrete
shear walls through the study of images of fracture
patterns caused by earthquakes [25]. They con-
cluded that multifractal parameters move toward
higher values as crack patterns extend and grow.

As it has been pointed out, many of the cited
works oriented to image analysis do not deal with
the multifractal spectrum as a whole, but rather
focus only on the values of some parameters to
characterize the processes under study. This is
a clear difference with the present contribution,
which seeks to study the shape of the spectrum for
real images and how it is associated with different
regions of the captures.

In recent decades, on the other hand, remote
sensing has become an extremely useful tool for
studying the complex dynamics of the Earth’s sur-
face. This technique gives us a huge amount of
periodic and varied information about it.

Along with the rapid development of remote
sensing, interest in the study of geometrical and
self-similarity properties of different elements of the
Earth’s surface has grown. Some examples are the
study of coastlines [26, 27], river basins [28], urban
sprawls [29, 30] and forests [31]. Researchers have
also turned their attention to the characteristics of
changes introduced in the ground by various en-
vironmental disasters such as wildfire [32, 33], oil
spills [34], seismic activity [35] and others. These
studies, mostly based on fractal theory, show the
intricate nature of the structures present in satel-
lite images captured by different sensors.

Taking all this into account, it is reasonable to
use multifractal approach on remote sensing im-
ages in order to develop segmentation tools that
could allow us to differentiate various ground cov-
ers based on their textural features.

In this work, we use the so-called coarse mul-
tifractal theory [5] because it is computationally
manageable and allows us to study, at the same
time, regularity of each pixel of an image and the
structures that points of similar regularity deter-
mine. This dual approach, local and global, be-
comes useful for classifying regions according to
their textural properties. Such a task would be very
hard to carry out by implementing a method that
analyzes only globally the properties of an image.

Since this work was done in the framework of
an interdisciplinary project devoted to plain rivers
modeling and flood predictions, we decided to di-
rect our attention towards segmentation of water
bodies. Our motivation is to develop a reliable
method for segmenting flooded areas accurately in
order to use the obtained information as input in a
prediction model.

This goal helped us devote our efforts in exam-
ining geometrical properties of multifractal spectra
corresponding to real images and to interpret them
in terms of geographical components of the scenes.
In particular, concavity of spectra caught our at-
tention because particularities on it seemed to be
correlated with water covers in the regions of inter-
est.

This article is organized as follows: Mathemati-
cal tools used in the analysis of the images are suc-
cinctly presented in section II, where central con-
cepts of multifractal theory and Iterated Function
Systems are defined. An interpretation of theoret-
ical concepts, which will allow further considera-
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tions on results, is also presented at the end of this
section.

Section III is mainly devoted to explain how the-
oretical concepts are adapted for image analysis
and segmentation. A procedure for testing multi-
fractal spectra obtained for synthetic images is also
explained here.

At the beginning of section IV, we present the
results of testing multifractal method with theo-
retical images. Then, we show the first spectra of
remote sensing images emphasizing the differences
with the ones corresponding to theoretical images.
After analyzing real images, we state a segmenta-
tion criterion for flooded areas and present compar-
isons between its results and water masks of the im-
ages. The conclusions of this research are presented
in section V.

II. Mathematical tools

In this section, we define the mathematical tools
that we are going to use. This is basically done
to clarify the notation and check the meaning of
some theoretical concepts, which will help inter-
pret results later. For a deeper explanation of the
concepts of measure, fine and coarse multifractal
theory, we refer the reader to [3, 5, 36].

i. Measures on Rn

A measure over a set X ⊂ Rn is defined as a func-
tion which associates a value in [0,∞) to every sub-
set of χ [5]. The support of a measure (spt(µ)) is
defined as the largest closed subset of the set χ for
which every open neighborhood of every point has
positive measure. A finite measure µ can be consid-
ered as a mass distribution over the support of the
measure. By definition, a measure is additive, that
is: the measure of a union of two disjoint subsets is
the sum of the measures of the subsets.

The class of Borel sets is defined as the smallest
collection of subsets of X ⊂ Rn which satisfy:

1. every open set and every closed set is a Borel
set;

2. the union of every finite or countable collection
of Borel sets is a Borel set, and the intersection
of every finite or countable collection of Borel
sets is a Borel set.

If the Borel sets of a set X can be measured with
a measure µ, then that measure is called a Borel
measure.

In this article, we are going to use ”sum mea-
sure”: let g(k, l) be the intensity in a grey scale of
a point (k, l), and let Ω be the set of all points in a
neighborhood of width i centered in a point (m,n),
then the measure of Ω is defined:

µi(m,n) =
∑

(k,l)∈Ω

g(k, l). (1)

ii. Hölder exponent and fine theory

Given a Borel measure µ and a point x in the sup-
port of µ, its local dimension [5] in x is

dimlocµ(x) = lim
r→0

ln(µ(B(x, r)))

ln r
(2)

if the limit exists, where B(x, r) is a ball of radius
r centered in x. This limit is usually called the
Hölder exponent (α). For α ≥ 0 we define

Fα = {x ∈ spt(µ) : dimlocµ(x) = α}. (3)

We define the Hausdorff fine multifractal spec-
trum fH(α) as the function that maps α to the
Hausdorff dimension dimH of the set Fα, that is:

fH(α) = dimHFα. (4)

Although the Hausdorff dimension is more conve-
nient for theoretical issues, in practice, it is almost
impossible to estimate from experimental data.
That is the reason why the so-called ’Coarse The-
ory’ is used to obtain the multifractal spectrum.

iii. Coarse theory

Once α is calculated for all x ∈ spt(µ) as explained
in the previous section , spt(µ) is covered with a
regular lattice of n-dimensional boxes of width r
(r-mesh). For r > 0 and α ≥ 0 we define

Nr(α) = #{ boxes of r-mesh such that µ(box) ≥ rα}.
(5)
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The coarse multifractal spectrum is defined in [5]
as

fC(α) = lim
ε→0

lim
r→0

ln(Nr(α+ ε)−Nr(α− ε))
− ln r

(6)

if the double limit exists.

iv. Moment sum and Legendre transforma-
tion

Another method to estimate the multifractal spec-
trum is based on the definition of the so-called par-
tition function. Given a measure µ, its support is
covered with an r-mesh. For q ∈ R and r > 0 parti-
tion function is defined as the sum of the q powers
of the measures µi of each box in the mesh,

χq(r) =

Nr∑
i=1

µqi , (7)

where Nr is the total number of boxes in the r-
mesh. Consistently with our previous assumptions,
χq(r) satisfies a power law behavior with respect to
its scale[5] at least for small r

χq(r) ∼ r−τ(q), (8)

If we discretize the range of α in intervals of
width ε (with ε sufficiently small), the sum in the
definition of χq(r) can be decomposed into a sum
over regions where α is approximatively constant
and of size proportional to r−f(α). It is then easy
to see that in the limit r → 0, the sum is dominated
by the α(q) that minimizes the exponent qα−f(α).
This leads to a relationship between f(α) and τ(q)
in terms of Legendre transform, defined for α ≥ 0
by

f(α) = inf
−∞<q<∞

(τ(q) + qα) (9)

If τ(q) is a convex function, which ensures that
the Legendre transform is uniquely determined, it
is possible to calculate f(α) inverting the Legendre
transform. The spectrum obtained with this pro-
cedure is usually known as Legendre Spectrum and
denoted fL(α).

Figure 1: Typical multifractal spectrum of a set
constructed by a Random Iteration Algorithm.

This method is usually more numerically man-
ageable than the one derived from coarse theory.
However, its application is limited to cases in which
τ(q) is a convex function of q, otherwise the result
is meaningless.

v. Iterated function systems (IFS)

Let D be a closed subset of Rn. A mapping S :
D → D is called a contraction on D if there is a
number c with 0 < c < 1 such that |S(x)−S(y)| ≤
c|x− y| ∀x, y ∈ D. If |S(x)−S(y)| = c|x− y|, then
S is called a contracting similarity.

An iterated function system is defined as a finite
family of contractions Sm with m ≥ 2. A non-
empty compact subset F ⊆ D is called attractor
for the IFS if F =

⋃m
i=1 Si(F ). An IFS determines

a unique attractor, which is usually a fractal.

Let us suppose we associate a probability to each
contraction of an IFS. If we apply the contractions
according to their probabilities on a point in the
IFS attractor, we will obtain a self-similar measure.
This method is known as Random Iteration Algo-
rithm.

As shown in [5], multifractal spectrum of self-
similar measures is strictly concave. In addition,
proposition 11.7 of [5] states that fC(α) = fL(α)
for that type of measures.
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vi. Interpretation of α values

A typical multifractal spectrum of a set D con-
structed by a Random Iteration Algorithm is
sketched in Fig. 1. An interpretation of α val-
ues arises from the spectra of these IFS. In [5], it
is shown that for a self-similar measure created by
an IFS {Si}, i = 1, . . . ,m, with contraction ratios
{ci} and probabilities {pi}

αmin = min
1≤i≤m

log pi
log ci

(10)

αmax = max
1≤i≤m

log pi
log ci

(11)

If we assume that ci = c ∀i, αmax is related to
the minimum pi. Assuming also that pi 6= pj when
i 6= j, there is a single point in D, let us say xαmax ,
for which α = αmax. Every point in D has a proba-
bility greater than that point. Applying similar rea-
soning, the point in D for which α = αmin, xαmin

is associated with the highest probability.
From Eq. (2), balls of radius r centered in xαmax

have lower measures as r becomes lower, but that
reduction is not proportional to r2. Since the set
is multifractal, discontinuities in the measures of
the neighborhoods occur as r varies, resulting in
a reduction of the measure proportional to rαmax ,
with αmax > 2.

III. Description of methods

In this section, we describe the use of mathematical
tools presented in section II to carry out the study
of images. In the first subsection, we describe the
algorithm used for synthesizing multifractal sets of
well known properties. We also describe how statis-
tical multifractal spectra of these sets are obtained
through the method of moments. In subsection ii,
we describe the application of coarse theory to syn-
thetic images and how its results are compared with
the statistical spectra. Finally, in subsection iii, the
analysis of satellite images through the coarse the-
ory is described.

i. Algorithm for creating synthetic multi-
fractal images

The algorithm used to obtain multifractal sets is
explained in a more detailed way in [21]. This al-

gorithm emulates deterministically the result of a
Random Iteration Algorithm over a subset of R2

with contractions

S1(x1, x2) = (x1/2, x2/2) (12)

S2(x1, x2) = (x1/2, x2/2 + 1/2) (13)

S3(x1, x2) = (x1/2 + 1/2, x2/2) (14)

S4(x1, x2) = (x1/2 + 1/2, x2/2 + 1/2), (15)

and corresponding probabilities {pi}, i = 1, . . . , 4
The contraction factor is 0.5 in all cases.

The algorithm begins with a square array of
2N × 2N pixels of value 1. The initial square is di-
vided into four squares and each one is multiplied
by the probability corresponding to the contraction
that each square represents. This process is iter-
ated over the resulting squares up to N iterations
(resolution limit).

Images of 256× 256 pixels were synthesized with
this algorithm based on random probabilities vec-
tors.

Because of the way in which these images are
created, τ(q) must be monotonically concave in
Eq. (9), allowing the use of Legendre transform
for determining their multifractal spectra. Differ-
ent meshes with boxes 64, 128 and 256 pixels wide
were applied. Given a mesh, the sum of the values
of the pixels within each box is calculated. These
measures are raised to an exponent q and added,
obtaining the value of the partition function for
that mesh width and the exponent q. After mak-
ing this calculation for each mesh, a linear fit of
the logarithm of the partition functions versus the
negative of the logarithms of the corresponding box
widths is performed. This gives us τ(q) of Eq. (8)
for each q. After applying Legendre transform to
τ(q), a statistical estimate of the multifractal spec-
trum is obtained.

As we said in section II.v, Legendre spectra of
self-similar synthetic sets must agree with coarse
multifractal spectra. That is the reason for using
the synthetic images as a test for the multifractal
method based on coarse theory.

ii. Analysis of synthetic images through
coarse theory

We choose B(x, r) in Eq. (2) to be square neigh-
borhoods of (2k − 1) × (2k − 1) pixels, with k =
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2, . . . , 8. Those neighborhoods are centered in the
pixel whose Hölder exponent we are trying to cal-
culate. The measure of all neighborhoods is calcu-
lated. A linear fit is then performed on the loga-
rithms of the measures versus the logarithms of the
neighborhood widths. The slope of the adjusted
line is our estimate of α for that pixel. A padding
of copies of the image is built for performing calcu-
lations on pixels next to the edges.

Once α values for every pixel are determined,
the range of α is divided into R = 10 classes
bounded by each pair of successive elements of the
list (αmin, αmin + δα

2 + s · δα, αmax), with δα =
(αmax − αmin)/R and s = 0, . . . , R − 2. Those
classes determine subsets of pixels with similar lo-
cal regularity. Then, we calculate the box count-
ing dimension of each subset. Different meshes are
applied to the image and the number of boxes nec-
essary to completely cover the selected subset is
counted. For each subset, we make a linear fit of
the logarithm of the number of boxes versus minus
the logarithm of the width of the boxes. The slope
of the fit is our estimate of f(αm), where αm is the
mean value of each class. The boxes of the meshes
used in the images have 4, 8, 16, 32, 64, 128 and 256
pixels of width.

It was checked that the multifractal spectra ob-
tained had uniform concavity and that they fulfilled
proposition 11.7 of [5]. Although proposition 11.7
states that fL(α) = fC(α) for a self-similar mea-
sure, given the discretizations made in the calcu-
lation of the spectrum through the coarse theory,
it is reasonable that fC values obtained are lower
than those of fL. Particularly, it was observed that
by reducing R in calculation of fC , a better match
between the spectra is obtained.

Errors in calculations of α for each pixel are ob-
tained. Errors in α exponents will affect the errors
in multifractal spectrum values. This is primarily
to the possible change in the full range of α values
found in the picture. In second place, if the pixels
have associated different exponents, when the total
range is divided into sub-ranges, this could change
the set of pixels included in a class, altering the
fractal dimension of the set. To account for this,
multifractal spectra for three sets of α were calcu-
lated: the set of α obtained, and the sets resulting
from adding and subtracting the corresponding er-
ror to the α value of each pixel. Spectra of these
three configurations are obtained with their respec-

tive errors.
The largest α error between the pixels of a class

is taken as the error bound of α for that class. For
each class, the error bound of f(α) is given by the
distance between that point and the farthest error
bound for that class.

Concavity is analyzed by calculating an approx-
imation of the second derivative of f(α). Thus, for
each point, it was calculated

∆f(αi) =
f(αi+1)− f(αi)

αi+1 − αi

, i = 1, . . . , 9; (16)

∆
2
f(αi) =

∆f(αi+1)−∆f(αi)

αi+1 − αi

, i = 1, . . . , 8. (17)

If ∆2f(αi) is negative for all i, then the function
is concave downward.

iii. Analysis of satellite images

Optical images taken by OLI (Operational Land
Imager) and TIRS (Thermal Infrared Sensor) sen-
sors of Landsat 8 satellite, provided by the U.S. Ge-
ological Survey [37] were studied. Since the work
was oriented to the detection of flooded regions, the
images were selected for having remarkable water
bodies and a low percentage of cloud cover. Analy-
sis was performed particularly in fragments of band
5 (wavelength of 0.851-0.879 µm) of those images.

Images were calibrated before being studied so
that their pixels represent values of reflectance mea-
sured by the sensor in each position. For more in-
formation on the Landsat 8 platform we refer to
[38].

Since it was found that τ(q) did not have a uni-
form concavity for satellite images, these images
were not studied using the method of moments, and
their spectra were obtained only through the coarse
theory.

As for the calculations of multifractal spectra in
synthetic images, we chose the B(x, r) in Eq. (2) to
be square neighborhoods of (2k−1)×(2k−1) pixels,
with k = 2, . . . , kend. Calculations on the pixels
near the border of the analyzed region are made
using adjacent regions of the image as padding.

The range of α is also divided into R classes
bounded by each pair of successive elements of the
list (αmin, αmin + δα

2 + s · δα, αmax), with δα =
(αmax−αmin)/R and s = 0, . . . , R−2. Box count-
ing dimension is obtained in each subset with the
procedure explained early.
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Selection of kend, R and the size of boxes in the
meshes used in box counting will be discussed in
the next section.

The classification of pixels of images as flooded or
not flooded is achieved through the application of
thresholds on the multifractal spectra. Selection of
those thresholds arose during the exploratory study
of the graphs of f(α) obtained and will be detailed
in section IV.

IV. Results and Discussion

Multifractal spectra of 600 synthetic images were
obtained through coarse theory and compared with
their statistical spectra. 591 spectra showed uni-
form concavity and fulfilled fC ≤ fL. Two exam-
ples are presented in Fig. 2.

Taking into account the results of calculations
on synthetic images, we decided to analyze some
remote sensing images through coarse theory. Ini-
tially, we took fragments of 256 × 256 pixels and
analyzed them with the same configuration as the
theoretical multifractals. Four examples are pre-
sented in Fig. 4. We noticed that concavity was
not uniform in the spectra of those images. Partic-
ularly, it seemed that for images where there were
large water bodies such as lakes, this change in con-
cavity occurred more markedly.

Calculation of multifractal spectra in case of
images built with IFS requires taking as maxi-
mum neighborhood width the one that most closely
matches the full width of the image because, other-
wise, the result does not fit the statistical spectra.
We suppose that this is due to the infinite nature
of fractals. Therefore, to take all possible intervals
within the limits of scale means to collect as much
information as possible.

As evidence of this, we have performed some cal-
culations on fractals created by IFS with 2048 ×
2048 pixels, which are not showed here. When the
points used in the calculus of α were plotted, we
observed that, to a certain scale, the points seemed
to have a slope. Then, it changed abruptly as a
result of discontinuity in the measurement. This
new slope was retained during some scales and then
a new change occurred. However, when a larger
number of scales was observed, a linear behavior
was seen in the points, despite these apparent local
changes in slope.
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Figure 2: Comparisons between multifractal spec-
tra obtained for two synthetic images through the
method of moments (red dots) and the coarse the-
ory (blue dots). Black dots correspond to multi-
fractal spectra resulting from α sets calculated by
adding and subtracting the corresponding error to
the α value of each pixel. They are used in the
determination of error bonds.

The case of real images is quite different since
they do not have an infinite number of possible
scales. Therefore, there is no need to take all pos-
sible neighborhoods for calculating the Hölder ex-
ponent.

However, given that this work is oriented to take
advantage of multifractal formalism for the detec-
tion and segmentation of water bodies, the choice
of kend is not trivial.

Before addressing the issue of the selection of
kend, we should explain the criterion for segmen-
tation of water bodies proposed in this work. For
that, note the analysis presented in Fig. 5. It
was done on an image of 1024 × 1024 pixels with
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(a) (b)

(c) (d)

Figure 3: Fragments of 256x256 pixels of images
taken by OLI - TIRS sensors of Landsat 8 satellite
(band 5).

kend = 10 and R = 30. In the corresponding mul-
tifractal spectrum, a central minimum is observed,
let us say αcenter. It has f(α) ≈ 1, indicating the
presence of a one-dimensional structure separating
two regions with different local regularity. Based
on section II.vi, it can be deduced that points in
an image with low values which are surrounded by
regions of pixels with higher values have high α
values. Then, flooded pixels in a Landsat image
whose reflectance is low in band 5 should have a
high Hölder exponent. Our idea is to detect αcenter
and classify pixels with α > αcenter as flooded.

Returning to the selection of kend, we have no-
ticed that if the largest neighborhood for each pixel
in a flooded region is large enough to cover an edge
of the water body, the pixels will have α ≥ 2. On
the contrary, if for example the largest neighbor-
hood centered in a pixel in the middle of a lagoon
does not touch the edge of it, then that pixel will
have α ≈ 2. Figure 6 presents an analysis of the
same region as in Fig. 5, with kend = 8 and R = 30.
It is clear that the pixels from the center of the
water body have an α ≈ 2, as opposed to what
happens in Fig. 5. In that situation, those pixels
would not be classified as water. For this reason, it
is necessary to insist on the fact that kend should
be chosen to avoid this situation.
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(d) Corresponding to 3(d)

Figure 4: Analysis performed on fragments pre-
sented in Fig. 3.
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Figure 5: Analysis performed on an image of 1024×
1024 pixels with kend = 10 and R = 30.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
−1

0

1

2

3

α

f(
α

)

Hölder Exponent

 

 

1.61

1.78

1.96

2.14

2.32

2.5

Fractal Dimension

 

 

0.21

0.54

0.87

1.21

1.54

1.88

Figure 6: Analysis performed on an image of 1024×
1024 pixels with kend = 8 and R = 30.

Clearly, the proposed criterion is only applicable
in cases where the multifractal spectrum possesses
that particular form. For example, a water body
such as a river will have a high α but the fractal
dimension of this region will be approximately 1.
Therefore, there may be no change in concavity in
that case. On the contrary, if besides a river we
also have a lagoon or a water body with a fractal
dimension greater than one and the greatest neigh-
borhoods are large enough to cover any of its edges,
then we will find a region with a high α and a frac-
tal dimension greater than 1, causing a minimum
in the center of the spectrum.

(a) LC8225079 (b) LC8225082

(c) LC8225083 (d) LC8227083

Designation: LC8225079 LC8225082 LC8225083 LC8227083
Sensor: OLI/TIRS
Data Type: L1T
Spacial

30 meters
resolution:
Acquisition

19/09/2016 18/08/2016 15/07/2015 15/09/2015
date:
WRS-2 Path: 225 225 225 227
WRS-2 Row: 079 082 083 083
Image quality: 9 9 9 9
Scene

.48 .03 .04 .1
cloud cover:
Size: 1024× 1024 1024× 1024 1024× 1024 512× 512

Figure 7: Optical images studied.
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Figure 8: Analysis performed on LC8225079 with
kend = 10 and R = 30.
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Figure 9: Analysis performed on LC8227083 with
kend = 9 and R = 30.
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Figure 10: Analysis performed on LC8225083 with
kend = 10 and R = 30.

With all that in mind, we now present segmenta-
tions performed on some Landsat images suitably
selected through visual inspection. Images are pre-
sented and described in Fig. 7.

Images LC8225079, LC8225082 and LC8225083
were analyzed with kend = 10, R = 30 and meshes
with boxes 4, 8, 16, 32, 64, 128, 256, 512 and 1024
pixels wide. On the other hand, for the analysis of
LC8227083 we used kend = 9, R = 30 and meshes
with boxes 4, 8, 16, 32, 64, 128, 256 and 512 pixels
wide.

Figures 8, 9, 10 and 11 show the results of the
analysis. Values of αcenter found in spectra are
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Figure 11: Analysis performed on LC8225082 with
kend = 10 and R = 30.

Table 1: Confusion matrix for image LC8225079.

Water Mask

Total
population: Water Not water

1048576

M
u

lt
if

ra
ct

al
an

al
y
si

s Water 236568 2164 PPV:
(22.56%) (0.21%) 99.09%

Not water 17080 792764 NPV:
(1.63%) (75.60%) 97.89%

Sensitivity: Specificity: Accuracy:
93.27% 99.73% 98.16%

Table 2: Confusion matrix for image LC8225082.

Water Mask

Total
population: Water Not water

1048576

M
u

lt
if

ra
ct

al
an

al
y
si

s Water 211601 3425 PPV:
(20.18%) (0.33%) 98.41%

Not water 13156 820394 NPV:
(1.25%) (78.24%) 98.42%

Sensitivity: Specificity: Accuracy:
94.15% 99.58% 98.42%
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Table 3: Confusion matrix for image LC8225083.

Water Mask

Total
population: Water Not water

1048576

M
u

lt
if

ra
ct

al
a
n

al
y
si

s Water 125959 575 PPV:
(12.01%) (0.05%) 99.55%

Not water 20908 901134 NPV:
(1.99%) (85.94%) 97.73%

Sensitivity: Specificity: Accuracy:
85.76% 99.94% 97.95%

Table 4: Confusion matrix for image LC8227083.

Water Mask

Total
population: Water Not water

262144

M
u

lt
if

ra
ct

al
an

al
y
si

s Water 44503 278 PPV:
(16.98%) (0.11%) 99.38%

Not water 4609 212754 NPV:
(1.76%) (81.16%) 97.88%

Sensitivity: Specificity: Accuracy:
90.62% 99.87% 98.14%

Table 5: Values of αcenter found in multifractal
spectra of analyzed images.

Image αcenter
LC8225079 2.23
LC8225082 2.18
LC8225083 2.17
LC8227083 2.20

Table 6: Cohen’s kappa coefficients obtained for
the correlation between segmentations and masks.

Image Cohen’s kappa coefficient
LC8225079 0.95
LC8225082 0.95
LC8225083 0.91
LC8227083 0.94

listed in table 5.

As a way of evaluating the efficiency of the pro-
posed segmentation method, the results were com-
pared with water masks of the regions, which were
provided by our colleagues of The National Water
Institute (INA): L. Giordano and J. Bianchi. Com-
parisons were made through confusion matrices and
the calculation of Cohen’s kappa coefficient for the
correlation between segmentations and masks.

Confusion matrices are presented in Tables 1, 2,
3 and 4, while table 6 summarizes kappa values
obtained.

V. Conclusions

In this work, we have studied properties of coarse
multifractal spectra calculated for optical satellite
images and we have compared them with spectra
corresponding to self-similar images. We have an-
alyzed the concavity of natural images spectra and
interpreted it in terms of structures present in the
images.

We have seen that, in presence of suitable water
bodies, a local minimum exists in the multifractal
spectra. Thanks to the dual approach of coarse
multifractal analysis, we could associate Hölder ex-
ponents higher than the local minimum with re-
gions covered by water.

Based on those results, we have introduced a
new criterion for segmentation of water bodies. Of
course, this criterion is far from universal. As we
mentioned early, the particular shape of spectra
used in segmentation depends on the presence of
given structures in the studied scenes. Without
those conditions, we are not able to perform an ac-
curate segmentation.

We must remark that the whole analysis could
not have been done by means of a statistical or
global approach because we would have needed also
a local characterization of pixels in order to detect
the correlation that allowed us to state the segmen-
tation criterion.

After discussing the applicability of the method,
we tested the accuracy of the results by comparing
them with water masks. The segmentations per-
formed showed a high coincidence with the ’true’
flooded regions, situation evidenced by Cohen’s
kappa values close to 1 presented in section IV.

It is interesting to note that the proposed method
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is only applied in this work to one band of spec-
tral information, but there is no limitation for its
application to other bands or even sensors of dif-
ferent nature. It is reasonable then to assume that
the study of the diverse remote sensing information
currently available could lead to a more complete
characterization of a region of interest.

Another possibility that could further extend the
usefulness of this method is the implementation of
different measures or even capabilities in addition
to the one presented here. This could allow the de-
tection of various structures or regions in an image,
leading to more detailed segmentations.
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