[1] B Borasoy, R Nissler, Hadronic η and η' decays, Eur. Phys. J. 26, 383 (2005).
https://doi.org/10.1140/epja/i2005-10188-9

[2] K Naito, M Oka, M Takizawa, T Umekawa, UA(1) breaking effects on the light scalar Meson Spectrum, Prog. Theor. Phys. 109, 969 (2003).
https://doi.org/10.1143/PTP.109.969

[3] S Weinberg, The U(1) problem, Phys. Rev. D 11, 3583 (1975).
https://doi.org/10.1103/PhysRevD.11.3583

[4] J Bijnens, η and η' Physics, Proceedings of the 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, eConf C 070910, 104 (2007).

[5] N Beisert, B Borasoy, The η' → η π π decay in U(3) chiral perturbation theory, Nuc.Phys. A 705, 433 (2002).
https://doi.org/10.1016/S0375-9474(02)00652-8

[6] S D Bass, Gluonic effects in η- and η'-nucleon and nucleus interactions, Acta Phys. Slovaca 56, 245 (2006).

[7] D Alde et al., Matrix element of the η'(958) → η π0 π0 decay, Phys. Lett. B 177, 115 (1986).
https://doi.org/10.1016/0370-2693(86)90026-2

[8] A Kupsc, Decays of η and η 0 mesons: An introduction, Int. J. Mod. Phys. E 18, 1255 (2009).
https://doi.org/10.1142/S0218301309013488

[9] A H Fariborz, J Schechter, η' → η π π decay as a probe of a possible lowest lying scalar nonet, Phys. Rev. D 60, 034002 (1999).
https://doi.org/10.1103/PhysRevD.60.034002

[10] R Escribano, P Masjuan, J J Sans-Cillero, Chiral dynamics predictions for η' → η π π, J. High Energy Phys. 2011, 94 (2011).
https://doi.org/10.1007/JHEP05(2011)094

[11] V Dorofeev et al., Study of η' → η π+ π- Dalitz plot, Phys. Lett. B 651, 22 (2007).
https://doi.org/10.1016/j.physletb.2007.05.060

[12] M Ablikim et al., Measurement of the matrix element for the decay η' → η π+ π-, Phys. Rev. D 83, 012003 (2011).
https://doi.org/10.1103/PhysRevD.83.012003

[13] A M Blik et al., Measurement of the matrix element for the decay η' → η π0 π0 with the GAMS-4π spectrometer, Phys. Atom. Nucl.+ 72, 231(2009).
https://doi.org/10.1134/S1063778809020045

[14] I Frolich et al., Pluto: A Monte Carlo simulation tool for hadronic physics, PoS (ACAT) 076 (2007).

[15] P Garg, D K Mishra, P K Netrakanti, A K Mohanty, B Mohanty, Unfolding of event-by-event net-charge distributions in heavy-ion collisions, J. Phys. G: Nucl. Part. Physics. 40, 055103 (2013).
https://doi.org/10.1088/0954-3899/40/5/055103

[16] M Ullrich, W Khn, Y Liang, B Spruck, M Werner, Nuclear instruments and methods in Physics Research section A: Accelerators, spectrometers, detectors and associated equipment, 769, 32 (2015).
https://doi.org/10.1016/j.nima.2014.09.078

[17] M Battaglieri, R De Vita, V Kubarovsky, Pentaquark at JLab: The g11 experiment in CLAS, AIP Conf. Proc. 792, 742 (2005).
https://doi.org/10.1063/1.2122143

[18] M Amarian et al., The CLAS forward electromagnetic calorimeter, Nucl. Instrum. Meth. A 460, 239 (2001).
https://doi.org/10.1016/S0168-9002(00)00996-7

[19] R Brun, F Rademakers, ROOT: An object oriented data analysis framework, Nucl. Inst. Meth. A 389, 81 (1997).
https://doi.org/10.1016/S0168-9002(97)00048-X

[20] S Ghosh, Dalitz plot analysis of η0 → η π+ π-, AIP Conf. Proc. 1735, 030018 (2016).
https://doi.org/10.1063/1.4949401