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Pattern formation mechanisms in sphere-forming diblock copolymer thin films

Leopoldo R. Gómez,1 Nicolás A. García,1 Richard A. Register,2 Daniel A. Vega1∗

The order–disorder transition of a sphere-forming block copolymer thin film was numerically stud-
ied through a Cahn–Hilliard model. Simulations show that the fundamental mechanisms of pattern
formation are spinodal decomposition and nucleation and growth. The range of validity of each re-
laxation process is controlled by the spinodal and order–disorder temperatures. The initial stages
of spinodal decomposition are well approximated by a linear analysis of the evolution equation of
the system. In the metastable region, the critical size for nucleation diverges upon approaching the
order–disorder transition, and reduces to the size of a single domain as the spinodal is approached.
Grain boundaries and topological defects inhibit the formation of superheated phases above the order–
disorder temperature. The numerical results are in good qualitative agreement with experimental data
on sphere-forming diblock copolymer thin films.

I. Introduction

Many practical applications of polymers and other soft
matter involve the self-assembly of the system into
complex multidomain morphologies [1]. The final
properties and applications of such materials depend
on the ability to control the morphology by adjusting
molecular features and macroscopic variables. For ex-
ample, by appropriate control over their molecular ar-
chitecture, block copolymers can be designed as rigid
and transparent thermoplastics, or as soft and flexible
elastomers, depending on the features of their building
blocks [1].

The most important features of the block copolymer
phase behavior are already captured by the simplest A–
B diblock architecture [1, 2]. Here, the unfavorable in-
teractions between blocks, and the constraints imposed
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by the connectivity between their constituents, results in
a nanophase separation leading to the formation of peri-
odic morphologies. For example, depending on molec-
ular size, temperature, and relative volume fraction of
the two blocks, diblock copolymer melts can develop
body-centered-cubic (BCC) arrays of spheres, hexago-
nal patterns of cylinders, gyroids, or lamellar structures.
For these systems, the periodicity of the self-assembled
pattern is mainly controlled by the average molecular
weight, and typically is in the range of 10–100 nm.
Also, since the magnitude of the interblock repulsive
interaction generally diminishes with temperature, an
order–disorder transition can be induced thermally at
the order–disorder transition temperature TODT [1, 2].

During recent decades, the properties of self-
assembling copolymers have received great attention
because of their potential use in nanotechnology [3–
10]. Applications of block copolymer systems include,
among others, templates for nanoporous materials, so-
lar cells, and photonic crystals. Perhaps the most press-
ing application for understanding pattern formation in
two-dimensional thin film systems is block copolymer
lithography [6–9]. This process uses self-assembled
patterns, such as single layers of cylinders or spheres in
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Figure 1: AFM phase images of the PS-PEP block copolymer thin film supported on a silicon substrate after annealing at T =
333 K. Left and right panels show the pattern configuration after 5 minutes and 255 minutes of thermal annealing, respectively.
Image size: 1.0 µm x 1.0 µm. The schematic in the central panel shows the block copolymer configuration in the thin film.
Here, the minority phase (polystyrene) forms hexagonally-packed arrays of nearly spherical domains (red domains in the
scheme). Note the presence of a wetting layer of PS blocks on the silicon substrate.

copolymer thin films, as templates to fabricate devices
at the nanometer length scale. However, the use of these
materials to obtain lithographic masks requires the pro-
duction of structures with long-range order. Since the
degree of ordering is controlled mainly by the density
of topological defects, it is important to determine the
physical mechanisms involved in the nanophase sepa-
ration process and the effects of the thermal history on
the pattern morphology.

Experimentally, the time evolution of the density
of topological defects and correlation lengths at T <
TODT has been studied through atomic force mi-
croscopy (AFM) in block copolymer thin films with
different morphologies [11–16]. On the one hand, by
comparing the density of disclinations (orientational de-
fects) and the correlation length, it was shown that in
cylinders (smectic phase) the dominant mechanism of
coarsening involves mostly the annihilation of com-
plex arrays of disclinations [11]. On the other hand,
in monolayers of sphere-forming thin films with hexag-
onal order it was found that the majority of the defects
are condensed in grain boundaries [16]. The orienta-
tional correlation length was found to grow following a
power law, but with a higher exponent than the trans-
lational correlation length [16, 17]. However, as the
typical exponents observed in the scaling laws of these
experimental systems are relatively small (∼ 1

5 for the
translational correlation length and 1

4 for the orienta-
tional correlation length), they are hard to distinguish
from logarithmic, glass-like, dynamics [18].

The process of phase separation and the kinetics
of ordering in different two-dimensional systems have
been studied through different phase field models [17–
20]. In particular, simulations of hexagonal systems
with a Cahn–Hilliard model were found to be in good
agreement with experimental data for block copolymer
thin films. Through simulations, it was also shown that
the orientational correlation length grows via annihila-
tion of dislocations [17]. In addition, simulations have
also shown that triple points, regions where three grains
meet, control the dynamics of defect annihilation and
can lead to the formation of metastable configurations
of domains that slow down the dynamics, with correla-
tion lengths growing logarithmically in time [18].

In block copolymer systems, the degree of order and
content of defects depend not only on TODT, but also
on thermal history, depth of quench, and other charac-
teristic temperatures, like the glass transition tempera-
ture for each block, the spinodal temperature, and the
temperature of crystallization (if any) [1, 2].

In general, in first-order phase transitions, the depth
of quench determines whether the system relaxes to
equilibrium by means of spinodal decomposition or nu-
cleation and growth [21,22]. Spinodal decomposition is
the relaxation process of a system quenched into an un-
stable state. In this case the phase transition is a sponta-
neous process, beginning with the amplification of fluc-
tuations which are small in amplitude but large in ex-
tent. Nucleation and growth is the physical mechanism
of relaxation emerging when the system is quenched
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into a metastable state. This is an activated process,
and a free energy barrier must be overcome in order to
relax to the stable phase. In polymeric systems both
mechanisms can be inhibited due to crystallization or
vitrification of any of the copolymer blocks [1].

In this paper, we study the disorder–order transi-
tion and the ordering kinetics in sphere-forming block
copolymer thin films as a function of the depth of
quench. The dynamics are studied through a Cahn–
Hilliard equation and compared with experiments on
diblock copolymer thin films. We have organized the
paper as follows: Section II presents the experimen-
tal system. In section III we present the equations of
evolution of the order parameter for diblock copolymer
systems and the classical linear instability analysis of
the Cahn–Hilliard equation. Section III.i describes the
numerical scheme employed to solve the model equa-
tions. Results and concluding remarks are presented in
sections IV and V, respectively.

II. Experimental System

The sphere-forming diblock copolymer used in this
work consists of a chain of polystyrene (PS, 3300
g/mol) covalently bonded to a chain of poly(ethylene-
alt-propylene) (PEP, 23100 g/mol). The copolymer
was synthesized through sequential living anionic poly-
merization of styrene and isoprene followed by selec-
tive saturation of the isoprene block [23]. Because
the two polymer species are immiscible, the minority
polystyrene forms spherical microdomains within the
majority poly(ethylene-alt-propylene). The bulk mor-
phology of the PS-PEP diblock copolymer consists of
arrays of spherical domains of PS packed with a BCC
order, with TODT = 394 ± 2 K, according to small-
angle X-ray scattering experiments. The glass transi-
tion temperature for the PS block was estimated to be
TPS
g ∼ 320 K while the glass transition temperature of

the PEP block is well below room temperature [24].
The block copolymer was deposited (film thickness

ca. 30 nm) on silicon substrates via spin coating from
a disordered state in toluene, a good solvent for both
blocks, to produce a quasi-two-dimensional periodic
hexagonal lattice of polystyrene spheres within a ma-
trix of poly(ethylene-alt-propylene). The film thick-
ness was measured using ellipsometry (Gaertner Scien-
tific LS116S300, λ = 632.8 nm). Order was induced
through vacuum annealing above the glass transition
temperature of both blocks and below the TODT of the

block copolymer. In this system, the PEP block wets the
air interface, while PS wets the silicon oxide substrate
[25, 26], i.e., there is an asymmetric wetting condition
(see schematic in Fig. 1).

Samples were imaged with a Veeco Dimension 3000
AFM in tapping mode, using phase contrast imaging.
The contrast is provided by the difference in elastic
modulus between the hard polystyrene spheres and the
softer poly(ethylene-alt-propylene) blocks. The repeat
spacing for the block copolymer is 25 nm (as measured
on thin films by AFM). The spring constant of the tip
(uncoated Si) was∼ 40 N/m and its resonant frequency
300 kHz.

During spin coating, most of the toluene evaporates
rapidly (within a few seconds), so the block copoly-
mer thin film suffers a relatively quick quench well be-
low the glass transition temperature of the PS domains,
inhibiting the relaxation of the early nanophase sepa-
rated structure towards equilibrium. The deep and quick
quench below the spinodal and order–disorder tempera-
tures forms a nanodomain structure that contains a high
density of defects. Figure 1 shows tapping-mode AFM
phase images of the PS-PEP system at a very early stage
of annealing. Note in this figure the large content of
defects and that the spherical domains are not well de-
fined. On the other hand, after ∼ 4 hours of annealing
above the glass transition temperature of the PS block,
the pattern shows a higher degree of order and a well-
defined structure of spherical domains. In order to bet-
ter quantify the degree of order in this system, here we
calculate the orientational order parameter ξ6. Using
standard image tools to identify the position of the in-
dividual spheres and applying a Delaunay triangulation
[13,16] it is possible to determine the inter-sphere bond
orientation θ(r), with regard to a reference axis. Then,
we can evaluate the local orientational order parameter
at a position r: Φ(r) = exp[6i(θ(r1) − θ(r2))], where
r = r1 − r2 [17, 18]. The azimuthally-averaged cor-
relation function g6(r) = 〈Φ(r)〉 was then calculated
and the correlation length ξ6 was measured by fitting
g6(r) with an exponential exp(−r/ξ6). Figure 2 shows
the azimuthally-averaged correlation function g6(r) for
the two pattern configurations shown in Fig. 1. During
annealing, the correlation length of the film increases
from . 10 nm to 80 nm upon increasing the annealing
time from 5 to 255 minutes.
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III. Model

The phase transition and the dynamics of nanophase
separation for a diblock copolymer can be described
through the Cahn–Hillard model [1]. A convenient or-
der parameter for the diblock copolymer can be defined
in terms of the local volume fractions for each block
as ψ = φA − φB − (1 − 2f). Here φA and φB are
the local densities for the A and B blocks, respectively,
and f is the volume fraction of one block in the copoly-
mer. The dynamics can be described by the following
time-dependent equation for a conserved order parame-
ter [27]

∂ψ

∂t
= M ∇2 δF{ψ}

δψ
. (1)

In this equation, M is a phenomenological mobility co-
efficient, and F{ψ} is the free energy functional. In this
model, all the dynamics are rescaled by the mobility
coefficient M , which fixes the characteristic timescale
of the diffusive phenomena that drive the dynamics to-
wards equilibrium. In block copolymer systems, the
diffusion process depends on several parameters, in-
cluding the monomeric friction coefficients of the in-
dividual blocks, molecular weight distribution, compo-
sition, symmetry of the mesophase structure, and de-
gree of segregation between blocks [28]. In addition,
the diffusion also depends on the molecular architecture

Figure 2: Orientational correlation function g6(r) for the two
patterns shown in Fig. 1. As annealing time increases, there
is an increasing order in the system, as shown by the slower
decay in g6(r) with r and the increase in the correlation length
ξ6.

and degree of entanglement, that dictate whether the re-
laxation occurs by a Rouse, reptation, or arm retraction
mechanism [28–30]. Thus, a detailed description of the
dynamics involves an enormous complexity and conse-
quently, at present, there is no phase field model equa-
tion like Eq. (1) able to capture all of the controlling
parameters. However, as the experiments here are con-
ducted at temperatures well above the glass transition
temperatures of both blocks, we found that a constant
mobility provides a good approximation to the dynamic
response.

In the mean field approximation, the free energy
functional for a diblock copolymer can be decomposed
into a sum of short-range and long-range terms [31, 32]

F{ψ} = FS{ψ}+ FL{ψ}. (2)

The short-range contribution FS has the form of a Lan-
dau free energy and can be expressed as

FS{ψ} =

∫
dr{W (ψ) +

1

2
D (∇ψ)2}, (3)

where W (ψ) represents the mixing free energy of
the homogeneous blend of disconnected A and B ho-
mopolymers, the term containing the gradient repre-
sents the free energy penalty generated by the spatial
variations of ψ (interfacial energy), and D is a pa-
rameter related to the Kuhn segment length a0 and
the number fraction of A monomers per chain f as:
D = b2

48f(1−f) [33].
The free energy W (ψ) has the form of a non-

symmetrical double well

W (ψ) = −1

2
[τ −a(1− 2f)2]ψ2 +

v

3
ψ3 +

u

4
ψ4. (4)

Here, the parameter τ is related to temperature by
means of the Flory-Huggins parameter χ through [34,
35]

τ = 8 f (1− f) ρ0 χ−
2 s(f)

f (1− f)N
, (5)

where ρ0 is the monomer density, N = NA + NB is
the total number of monomers in the diblock copoly-
mer chain, s(f) is a constant of order one [31], v =
ν(1 − 2f) and b = 9

[2Na0(1−f)]2 . Here, a, ν, and u are
phenomenological constants derived by Leibler using
the random phase approximation [31, 33].

The Flory-Huggins interaction parameter χmeasures
the incompatibility between the two monomer units
and depends on the absolute temperature T as χ =
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Figure 3: Phase separation process after 4.5× 104 time steps
for a sphere-forming diblock copolymer monolayer quenched
within the spinodal region. Top and bottom panels correspond
to τr = τ/τs − 1 = 0.34 and τr = 0.025, respectively. In
order to describe the structure of domains developed by the
minority phase, here we employ a contour plot at a fixed value
of the order parameter (ψ = −0.22).

A + B/T , where A and B are phenomenological con-
stants [1]. Thus, note that here τ increases as tempera-
ture decreases.

The term FL{ψ}, representing the long-range con-
tribution that accounts for the connectivity between
blocks, can be expressed as [32]

FL{ψ} =
b

2

∫
dr1

∫
dr2G(r1 − r2)ψ(r1)ψ(r2),

(6)
where G is the solution of∇2G(r) = −δ(r).

Then, using Eqs. (2)–(6), Eq. (1) takes the form

1

M

∂ψ

∂t
= ∇2(f̃(ψ)−D∇2ψ)− bψ, (7)

where f̃(ψ) is given by

f̃(ψ) = −[τ − a (1− 2 f)2]ψ + v ψ2 + uψ3. (8)

Equation (7) is actually a coarse-grained phase field
model. In recent years, such models have been used
to study a variety of systems under different condi-
tions, including shear and other external fields, curva-
ture and patterned substrates, and pattern formation in
3D [20,33,36–40]. In this work, the free energy param-
eters were selected to capture the desired symmetry and
segregation strength of the block copolymer hexagonal
phase [20, 34, 35]. More details about the equilibrium
phase diagram and the different spinodals can be found
elsewhere [34, 35, 41–44].

i. Numerical methods

In this work, Eq. (7) was numerically solved under con-
finement between impenetrable walls that represent the
interfaces with the air and the silicon wafer. To de-
scribe the confinement interactions we consider an ex-
ternal field that couples with the two components of
the block copolymer system (see details in Ref. [45]).
The film thickness was fixed at the monolayer value.
We employed periodic boundary conditions along the
(x,y)-axis. The evolution equation, Eq. (7), was solved
through the cell dynamics method, which has been ex-
tensively used in non-equilibrium studies of this kind of
system [35]. One of the main advantages of this model
is that it is efficient over the time scales involved in the
dynamics of defect annihilation, and is thus appropriate
to describe the dynamics of coarsening (see Ref. [46]
for an extensive and detailed analysis of the cell dynam-
ics method and a comparison with the Cahn–Hilliard–
Cook model). Another remarkable advantage of this
model is its matricial nature (continuum discretization),
which allows the implementation of a transparent paral-
lelization into a GPU code. Here, we solved this model
using a dual buffering scheme (Ping-Pong technique)
and an optimized use of the different GPU memories
[47, 48].

We study how the process of pattern formation varies
with the parameter related to the temperature τ , while
keeping the rest of the parameters fixed at the following
values: M = 1.0,D = 0.1, a = 1.5, v = 2.3, u = 0.38
and b = 0.01. The initial homogeneous (disordered)
state is simulated by a random noise distribution of the
order parameter.

Figure 3 shows two snapshots of typical pattern con-
figurations obtained through simulations of monolay-
ers, at different conditions of annealing when an ini-
tially disordered system is quenched into the spinodal
region (τs < τ < τODT).
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To obtain a better comparison with the experimen-
tal AFM phase images shown in Fig. 1, rather than
considering a contour plot to describe the individual
PS spheres, in Fig. 4 we integrate the order parameter
describing the density fluctuations along the direction
perpendicular to the substrate. In this way, the inter-
faces are smoothed out, facilitating the comparison with
AFM. Note the qualitative agreement between experi-
mental data (Fig. 1) and the numerical results shown in
Fig. 4 for systems at different annealing conditions.

ii. Linear Instability Analysis

Due to the strong degree of confinement in the mono-
layer, in general the formation of ordered structures and
patterns can be well approximated as a 2D process. In
this section we consider temperatures in the vicinity of
the order–disorder transition (T . TODT) and study the
pattern evolution of a modulated structure in the plane
z = 0, whose order parameter profile can be described
by the following sum of Fourier modes

ψ(r, t) =
∑

k

ψk exp (ik · r + λ t), (9)

where ψk is the Fourier coefficient at t = 0 (we con-
sider that k is restricted to the thin film’s middle plane
and neglect the spatial variation of ψ along the direction
perpendicular to the thin film surfaces).

The stability of the solution ψ = 0 (high temperature
phase) for a system quenched into an unstable state can
be studied by linearizing Eq. (7) around ψ = 0 [49,50].
Substituting Eq. (9) into the linearized Eq. (7), it can
be easily shown that the amplification factor λ satisfies

λ(k) = −Dk4 + [τ − a (1− 2 f)2] k2 − b, (10)

where k = ‖k‖. The spinodal/nucleation and growth
transition line can be calculated as the lowest value of
τ for which an extended mode can grow, i.e., λ > 0 for
some k

τs = 2
√
D b+ a (1− 2 f)2. (11)

Thus, for τ < τs, no extended mode can be amplified
and the state ψ = 0 is a stable or metastable configura-
tion. If τ > τs, some modes grow exponentially with
time. These growing modes are constrained according
to

k21 ≤ k2 ≤ k22, (12)

Figure 4: Two-dimensional pattern configurations for the 3D
simulation data shown in Fig. 3. Observe the similarities
between these patterns and those in the experimental system
shown in Fig. 1.

where

k21 =
Γ−
√

Γ2 − 4D b

2D
,

k22 =
Γ +
√

Γ2 − 4D b

2D
,

(13)

with Γ = τ −a (1−2 f)2. Moreover, the most unstable

100001-6



PAPERS IN PHYSICS, VOL. 10, ART. 100001 (2018) / L. R. Gómez et al.

mode (where λ is maximal) is

ks =

√
Γ

2D
. (14)

If τ → τs, this has the form ks → (b/D)1/4, and is the
only mode which is unstable.

Note that, in general, the spinodal temperature does
not coincide with the order–disorder transition temper-
ature, TODT. If a homogeneous system is quenched be-
tween these temperatures, it can remain in a metastable
state, which can relax only by nucleation and growth.
For block copolymers the two temperatures coincide
only for symmetric lamellar morphologies, f = 1

2 [1].
Figure 5 shows the range of unstable modes as given

by Eq. (12). Note that the distribution of unstable
modes is not symmetrically distributed around ks, the
wave vector at the spinodal. This skewness becomes
progressively larger as the depth of quench increases.
Consequently, for systems quenched in the neighbor-
hood of the spinodal, one can expect a very strong
length scale selectivity and a strong free energy penalty
for elastic distortions which shift the system from the
optimum ks. On the other hand, deep quenches stabi-
lize the presence of different elastic distortions and thus,
more disordered patterns can be expected. In addition,
due to the skewness of the distribution, phase-separated
systems generated at deep quenches are characterized
by an average wave vector k > ks.

Figure 5: Range of unstable modes as a function of the re-
duced temperature. Inset: k2/k1 as a function of the reduced
temperature. Note that the unstable modes are not evenly dis-
tributed around ks.

It is known that the linear instability analysis de-
scribes only the initial stage (short times) of the spin-
odal decomposition mechanism. As time proceeds, the
dynamics become highly nonlinear and higher-order
wave numbers emerge [51–53]. We will discuss these
other stages of spinodal decomposition in the next sec-
tion.

IV. Results

i. Spinodal Decomposition

Spinodal decomposition is the process of relaxation of
thermodynamically unstable states. Early studies on
spinodal decomposition date back to the 1960s, with
the pioneering works of Cahn and Hilliard [53], Hillert
[54], and Lifshiftz and Slyozov [55]. Such studies were
mainly focused on the mechanism of phase formation
and macroscopic phase separation in solid binary alloys
and fluid binary mixtures.

At present, it is well known that spinodal decom-
position in binary mixtures has three different regimes
[56]. Initially, some modulations present in the homo-
geneous phase grow exponentially with time, follow-
ing the early linear evolution dynamics. With time, the
nonlinear coupling between these growing modes slows
their growth. In this second stage, the pattern has well-
defined interfaces delimiting domains of the different
stable phases. At longer times, the average domain size
increases in order to reduce the total interfacial area.
The asymptotic long-time state consists of two macro-
scopic domains, one for each phase.

In block copolymers, most of the studies of pat-
tern formation and ordering investigate the later stage
of spinodal decomposition (the coarsening stage), fo-
cusing on the kinetic exponents of evolution, and
comparison with other related systems, like the self-
assembled structures observed in Rayleigh-Benard con-
vection [17, 18, 46, 56–60]. Here, we consider the early
stages of spinodal decomposition in sphere-forming
block copolymer systems under confinement in mono-
layers. We have observed two leading factors that con-
trol the degree of order during annealing below the spin-
odal. For τ > τs the system is nanophase-separated but
disordered and the kinetics of ordering are completely
inhibited, while for τ & τs the strong length scale se-
lectivity observed in Fig. 5 leads to well-defined hexag-
onal patterns with a lower density of defects and faster
ordering kinetics. The differences in mode selectivity
as a function of τ can be visualized in Fig. 3, where it
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can be appreciated that deep quenches lead to patterns
with poorly defined symmetry.

In order to explore the dynamics and to facilitate
comparison with the experimental results, here we have
computed the circularly averaged structure factor for
both experiments and simulations. The circularly av-
eraged structure factor is defined as

Sk = 〈ψ̃(k) ψ̃∗(k)〉, (15)

where ψ̃(k) is the Fourier transform of the order param-
eter.

For the experimental data, we have calculated Sk

through the phase fields obtained by imaging the block
copolymer with AFM. Although the density maps ob-
tained by AFM are correlated with the local elasticity
of the system, rather than with density fluctuations, they
adequately describe the main pattern features: symme-
try, defects, and degrees of local and long-range order.

Figure 6 shows Sk for systems quenched and an-
nealed at different conditions, as obtained from the sim-
ulations. Here, if the high-temperature phase is deeply
quenched into the spinodal region (τr = τ/τs − 1 =
0.2), the length-scale selectivity imposed by the ra-
dius of gyration of the molecule leads to a nanophase-
separated system with poorly defined symmetry. The
insets in Fig. 6 show the 2D scattering function for this
system under two different conditions. The broad halo

Figure 6: Circularly averaged scattering function Sk from
simulations, at different depths of quench and annealing
times. The insets show the 2D patterns of Sk. The higher-
order peaks, located at

√
3kmax,

√
4kmax and

√
7kmax, are

the signature of hexagonal order.

of intensity is consistent with a poorly defined sym-
metry and liquid-like order. In this case, there is not
only one mode which can grow, but rather a continuous
range of modes delimited by an annulus determined by
k1 ≤ k ≤ k2 (see Fig. 5). As the temperature is low
and a wide spectrum of modes is stable, the kinetics
of coarsening are frozen. Observe in Fig. 6 that even
after 3 × 105 time steps, Sk remains unaffected when
τr = 0.2. Similar results were found by Yokojima
and Shiwa, and by Sagui and Desai, in a related sys-
tem [61–63]. By including thermal fluctuations it has
been shown that the system can move towards equilib-
rium via defect annihilation and grain growth [17, 64].

When the same system is subjected to a shallow
quench, τr = 3 × 10−4, Sk shows the typical fea-
tures of hexagonal patterns, with a sharper main peak at
kmax and well-defined higher-order peaks at

√
3kmax,√

4kmax and
√

7kmax. The rings of nearly uniform in-
tensity are also a signature of isotropy. However, in this
case the isotropy emerges as a consequence of the poly-
crystalline structure and not a liquid-like order, as in
the case of systems deeply quenched below the spin-
odal temperature TS.

The dominant features of the scattering function
during spinodal decomposition are in good qualitative
agreement with the experimental data shown in Fig. 7.
In the experimental system, the early patterns are char-

Figure 7: Circularly averaged scattering function Sk for the
experimental data at two different annealing times. Annealing
temperature: T=333 K. Note that as annealing time increases,
the main peak sharpens, shifts towards lower values of k, and
develops a second-order peak at

√
3kmax, characteristic of a

hexagonal pattern.
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acterized by a strong length-scale selectivity, but short-
range order (see also Fig. 1). As the annealing time in-
creases, there is a shift of the main peak in Sk towards
lower values of k. In addition, the main peak sharpens,
and a weak higher-order peak located at

√
3kmax can be

clearly identified. These features are in good agreement
with the results of Figs. 1 and 2, which show increasing
order with annealing time.

Although there is qualitative agreement between ex-
periments and simulations, it must be emphasized that
the model employed here cannot capture the detailed
dynamics of the system as a function of temperature.
In block copolymers, the chain mobility depends on an
effective monomeric friction coefficient that is strongly
dependent on temperature, the glass transition and/or
crystallization temperatures of the individual blocks,
the degree of segregation between blocks, the symme-
try of the self-assembled structure, and the degree of
entanglement. Although some of these properties can
be qualitatively captured through an effective mobility
coefficient [M in Eq. (1)], at present it is not quantita-
tively clear how these factors affect the dynamics.

ii. Nucleation and growth

When the high-temperature phase is quenched to tem-
peratures slightly above the spinodal (quenches with
τ . τs), all the modes decrease exponentially in time
and the order parameter goes to zero across the whole
system. That is, the initially randomly distributed or-
der parameter ψ(r), characterized by 〈ψ(r)〉 = 0 and
〈ψ(r)ψ(r’)〉 6= 0, dies off. However, in the same range
of temperatures, an initial crystalline hexagonal pattern
is completely stable, indicating a region of metastabil-
ity τs > τ > τODT, where τODT denotes the limit of
metastability.

In addition, within this metastable region, a poly-
crystalline structure can improve its degree of order
via the annihilation of defects, with a similar mecha-
nism to the one observed for quenches only slightly be-
low the spinodal. Figure 6 also shows Sk for a system
quenched into this metastable region (τs > τ > τODT,
τr = −5 × 10−2 < 0). Note that at the same time of
annealing (3×105 timesteps), as compared with the sys-
tem quenched below the spinodal (τr = 3×10−4 > 0),
this system shows an improved order, as the main peak
sharpens and higher-order peaks become better defined.

The most distinctive feature of the metastable region
is that only the nuclei or grains above a critical size can
grow to develop the equilibrium phase, while smaller

Figure 8: Critical nucleus sizeRc vs. the reduced temperature
τ/τODT− 1. Here a is the lattice constant. Note that Rc ∼ a
for τ ∼ τs.

nuclei collapse due to the surface free energy. Accord-
ing to the classical picture of nucleation and growth in
2D, the variation in the free energy ∆F due to the for-
mation of a nucleus of radius R can be expressed as
[21, 22]

∆F = 2σπR− π|∆F0|R2, (16)

where σ represents the line tension and ∆F0 ∝
(τODT − τ) is the difference in the local free ener-
gies of the high-temperature (disordered) and the low-
temperature (ordered) phases, which drives the transi-
tion. Due to the competition between these surface and
volume contributions, only those nuclei whose size ex-
ceeds a critical valueRc can propagate to form the equi-
librium phase.

In order to obtain the dependence of the critical size
for nucleation Rc on the depth of quench, we explore
the stability of crystalline nuclei of different sizes.

To study the stability of a crystal seed, we change
τ back and forth around the critical value to obtain
a defect-free crystal patch. The partial melting and
recrystallization involved in this process removes de-
fects and long-wavelength elastic distortions and yields
a crystal seed that is then used as an initial condition
in the numerical solution of Eq. (1). Figure 8 shows
the critical size for nucleation Rc as a function of τ .
Around the order–disorder temperature τODT we found
that the critical size for grain growth Rc diverges as
Rc ∼ 1/(τ/τODT−1), in agreement with classical the-
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Figure 9: Time evolution of a crystalline domain as a function
of temperature for a system quenched to τODT < τ < τs.
Here the left panel corresponds to a hexagonal grain of initial
size R0/a = 4.6, where a is the lattice constant. The right
panels correspond to a grain that collapses [top, τ < τc(R)]
or propagates [bottom, τ > τc(R)].

ories of nucleation and growth [22]. Note also that as
the spinodal temperature is approached, the critical size
for nucleation becomes on the order of the lattice con-
stant a. This result indicates that the process of spinodal
decomposition could be inhibited, as the nucleation and
growth process precedes spinodal decomposition [22].

Figure 9 shows typical snapshots of the evolution of
nuclei as a function of temperature for quenches within
the metastable region (τODT < τ < τs). For an
initial crystalline nucleus of a given size R, and with
Rc ∝ (τODT − τ)−1, if the temperature is lowered to
a value where R is larger than Rc, grain growth occurs.
Otherwise, the crystal collapses since line tension over-
comes the bulk contribution.

iii. Melting

A perfect crystalline structure may get trapped in a su-
perheated state, such that the system may remain or-
dered when annealing above τODT. However, we ob-
served that for polycrystalline structures, topological
defects trigger the phase transition, inhibiting super-
heating and disordering the system when τ & τODT.
Figure 10 shows a polycrystalline structure obtained
during annealing at τr = 1.64 × 10−2. This figure
shows the local orientation of the different hexagonal
grains and also the defect structure. In 2D crystals with
hexagonal symmetry, the elementary defects, named
disclinations, are the domains which have a number of
neighbors different from six (a five-coordinated domain
is a positive disclination and a seven-coordinated do-
main is a negative disclination). In general, these de-

Figure 10: Orientational map θ(r) (left panel) and defect
structure (right panel) of the hexagonal lattice determined by
a Delaunay triangulation. Spheres with seven neighbors are
indicated with a green dot, those with five neighbors in red.
Dislocations are formed by a pair of 5-7 disclinations sepa-
rated by one lattice constant, and are indicated by a connect-
ing yellow line segment (see also the inset with a dislocation).
A comparison between the defect structure and local orienta-
tion indicates that grain boundaries are decorated with linear
arrays of dislocations. The bottom of the figure for θ(r) shows
the color scale used to indicate the local orientation. Here the
patterns correspond to τr = 1.64 × 10−2 and 9 × 104 time
steps.

fects are too energetic to be found in isolation: they
couple in pairs to form dipoles, also known as dislo-
cations (see Fig. 10). Note in Fig. 10 that disloca-
tions are piled up in linear arrangements, decorating the
grain boundaries. Figure 11 shows two snapshots of the
system during annealing at temperatures above TODT.
Note in this figure the strong correlation between the
liquid-like phase (ψ = 0) and the position of the ini-
tial grain boundaries. In addition, it can also be ob-
served that melting does not start uniformly at all grain
boundaries, but depends on the orientational mismatch
between neighboring crystals.

The average distance between the dislocations lo-
cated along a grain boundary depends on the orien-
tation mismatch between neighboring grains, ∆θ, as
dds ∝ a/∆θ−1, where a is the lattice constant. Note
that the largest possible mismatch in orientation be-
tween crystals in a hexagonal pattern is 30 Degrees.
Compared with small-angle grain boundaries (SAGB),
large-angle grain boundaries (LAGB, those for which
the orientational mismatch is in the range 10–30 De-
grees), are more energetic and contain a larger num-
ber of dislocations per unit length. Consequently, the
phase transition is initially triggered at LAGB, where
the crystal is more disordered. We also observe that the
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kinetics of disordering are affected by the initial defect
structure. Note in Fig. 12 that a polycrystal with small
crystal size, and thus a higher content of dislocations,
leads to a larger fraction of the liquid phase at the same
annealing time.

Figure 11: Upon increasing the temperature above TODT, the
crystals of Fig. 10 melt first at LAGB (left panel). As time
proceeds, the liquid phase (ψ = 0) propagates through the
system. τ = 0.938τs. Left panel: t = 1.5 × 103 time steps.
Right panel: t = 5× 104 time steps.

Figure 12: Melting of the crystal phase for a system contain-
ing a relatively large initial content of topological defects(left
panel). Although the temperature and annealing time are the
same as in the left panel of Fig. 11, due to the larger initial
content of defects, there is a larger fraction of liquid phase
here. τ = 0.938τs, t = 1.5× 103 time steps.

V. Conclusion

In this work, we studied the different mechanisms
leading to the self-assembly of sphere-forming block
copolymer thin films. Using a Cahn–Hilliard free en-
ergy model valid for diblock copolymers, we followed
the evolution of the system with numerical simulations
for different temperatures, and presented a unified view
of the phase transition process. The results are con-
sistent with a first-order transition. Below a spinodal

temperature TS, the initially homogeneous disordered
state relaxes towards equilibrium by spinodal decom-
position, by the spontaneous growth of characteristic
modes. Above this temperature, the system can only
self-assemble into an ordered phase by nucleation and
growth (TS < T < TODT). Above the order–disorder
temperature TODT a well-ordered system can in princi-
ple remain superheated without disordering. However,
dislocations and grain boundaries trigger the melting of
the structure, such that defective states cannot be super-
heated above TODT.

For systems quenched into the metastable region, we
found that the critical size for nucleation and growth di-
verges as the disorder–order temperature is approached,
following the law: Rc ∼ 1/(τ/τODT−1), in agreement
with classical theories of nucleation and growth.
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