[1] R B Jacobs, Phosphorus at high temperatures and pressures, J. Chem. Phys. 5, 945 (1937).
https://doi.org/10.1063/1.1749968

[2] L Pauling, M Simonetta, Bond orbitals and bond energy in elementary phosphorus, J. Chem. Phys. 20, 29 (1952).
https://doi.org/10.1063/1.1700191

[3] R R Hart, M B Robin, N A Kuebler, 3p orbitals, bent bonds, and the electronic spectrum of the p4 molecule, J. Chem. Phys. 42, 3631 (1965).
https://doi.org/10.1063/1.1695771

[4] H Liu et al., Phosphorene : An unexplored 2d semiconductor with a high hole mobility, ACS Nano 8, 4033 (2014).
https://doi.org/10.1021/nn501226z

[5] A N Rudenko, M I Katsnelson, Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus, Phys. Rev. B 89, 201408 (2014).
https://doi.org/10.1103/PhysRevB.89.201408

[6] A S Rodin, A Carvalho, A H Castro Neto, Strain-induced gap modification in black phosphorus, Phys. Rev. Lett. 112, 176801 (2014).
https://doi.org/10.1103/PhysRevLett.112.176801

[7] L Li et al., Black phosphorus field-effect transistors, Nat. Nanotechnol. 9, 372 (2014).
https://doi.org/10.1038/nnano.2014.35

[8] R W Keyes, The electrical properties of black phosphorus, Phys. Rev. 92, 580 (1953).
https://doi.org/10.1103/PhysRev.92.580

[9] X Ling, H Wang, S Huang, F Xia, M S Dresselhaus, The renaissance of black phosphorus, P. Natl. Acad. Sci. USA 112, 4523 (2015).
https://doi.org/10.1073/pnas.1416581112

[10] V Tran, R Soklaski, Y Liang, L Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus, Phys. Rev. B 89, 235319 (2014).
https://doi.org/10.1103/PhysRevB.89.235319

[11] A Carvalho et al., Phosphorene: From theory to applications, Nat. Rev. Mater. 1, 16061 (2016).
https://doi.org/10.1038/natrevmats.2016.61

[12] V V Kulish, O I Malyi, C Persson, P Wu, Adsorption of metal adatoms on single-layer phosphorene, Phys. Chem. Chem. Phys. 17, 992 (2015).
https://doi.org/10.1039/C4CP03890H

[13] P Rastogi, S Kumar, S Bhowmick, A Agarwal, Y S Chauhan, Effective doping of monolayer phosphorene by surface adsorption of atoms for electronic and spintronic applications, IETE J. Res. 63, 205 (2017).
https://doi.org/10.1080/03772063.2016.1243020

[14] H Duan et al., Anisotropic RKKY interaction and modulation with mechanical strain in phosphorene, New J. Phys. 19, 103010 (2017).
https://doi.org/10.1088/1367-2630/aa833a

[15] A C Kondo, The Kondo Problem to Heavy Fermions, Cambridge University Press, New York (1983).

[16] K Yosida, Magnetic properties of Cu-Mn alloys, Phys. Rev. 106, 893 (1957).
https://doi.org/10.1103/PhysRev.106.893

[17] M A Ruderman, C Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96, 99 (1954).
https://doi.org/10.1103/PhysRev.96.99

[18] T Kasuya, A theory of metallic ferro- and antiferromagnetism on Zener's model, Prog. Theor. Phys. 16, 45 (1956).
https://doi.org/10.1143/PTP.16.45

[19] A Allerdt, R Zitko, A E Feiguin, Nonperturbative effects and indirect exchange interaction between quantum impurities on metallic (111) surfaces, Phys. Rev. B 95, 235416 (2017).
https://doi.org/10.1103/PhysRevB.95.235416

[20] A Allerdt, C A Busser, G B Martins, A E Feiguin, Kondo versus indirect exchange: Role of lattice and actual range of RKKY interactions in real materials, Phys. Rev. B 91, 085101 (2015).
https://doi.org/10.1103/PhysRevB.91.085101

[21] A Allerdt, A E Feiguin, S D Sarma, Competition between Kondo effect and RKKY physics in graphene magnetism, Phys. Rev. B 95, 104402 (2017).
https://doi.org/10.1103/PhysRevB.95.104402

[22] C A Busser, G B Martins, A E Feiguin, Lanczos transformation for quantum impurity problems in d-dimensional lattices: Application to graphene nanoribbons, Phys. Rev. B 88, 245113 (2013).
https://doi.org/10.1103/PhysRevB.88.245113

[23] S R White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
https://doi.org/10.1103/PhysRevLett.69.2863

[24] S R White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48, 10345 (1993).
https://doi.org/10.1103/PhysRevB.48.10345

[25] A E Feiguin, The density matrix renormalization group method and its time-dependent variants, AIP Conf. Proc. 1419, 5 (2011).
https://doi.org/10.1063/1.3667323

[26] M Ezawa, Topological origin of quasi-flat edge band in phosphorene, New J. Phys. 16, 115004 (2014).
https://doi.org/10.1088/1367-2630/16/11/115004

[27] B Zhou, B Zhou, X Zhou, G Zhou, Even-odd effect on the edge states for zigzag phosphorene nanoribbons under a perpendicular electric field, J. Phys. D: Appl. Phys. 50, 045106 (2017).
https://doi.org/10.1088/1361-6463/aa52b5

[28] O V Yazyev, L Helm, Defect-induced magnetism in graphene, Phys. Rev. B 75, 125408 (2007).
https://doi.org/10.1103/PhysRevB.75.125408

[29] S Casolo, O M Lovvik, Understanding adsorption of hydrogen atoms on graphene, J. Chem. Phys. 130, 054704 (2009).
https://doi.org/10.1063/1.3072333

[30] H Gonzalez-Herrero et al., Atomic-scale control of graphene magnetism by using hydrogen atoms, Science 352, 437 (2016).
https://doi.org/10.1126/science.aad8038

[31] E H Lieb, Two theorems on the Hubbard model, Phys. Rev. Lett. 62, 1201 (1989).
https://doi.org/10.1103/PhysRevLett.62.1201