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Physical pendulum experiment re-investigated with an accelerometer
sensor

C. Dauphin,*2?* F. Bouquet?

We have conducted a compound pendulum experiment using Arduino and an associated
two-axis accelerometer sensor as measuring device. We have shown that the use of an ac-
celerometer to measure both radial and orbital accelerations of the pendulum at different
positions along its axis offers the possibility of performing a more complex analysis com-
pared to the usual analysis of the pendulum experiment. In this way, we have shown that
this classical experiment can lead to an interesting and low-cost experiment in mechanics.

I. Introduction

The physical pendulum experiment is the typical
one to introduce the physics of oscillating systems.
The usual aim of the analysis of this experiment
is to determine the pendulum period and damping
factor by using an angular position sensor [1,2].

We have conducted the pendulum experiment by
using a two axis accelerometer sensor. Such sensor
has already been used by Fernandes et al. (2017) [3]
but their study focused on the analysis of the time
variation of the radial acceleration to investigate
large-angle anharmonic oscillations.

Here, we have used the accelerometer to measure
both radial and orbital accelerations of the pendu-
lum at different positions along its axis, which offers
the possibility of performing a more complex anal-
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ysis compared to the usual single measurement of
the pendulum period.

Furthermore, we use a microcontroller and an
associated two axis accelerometer sensor to acquire
the data. Thus, we have used this simple and low
cost experiment compared to the ready to use com-
mercial one to introduce a richer theory and data
analysis tools that can lead to an interesting exper-
iment in mechanics.

We have described the theoretical analysis of this
experiment and present an example of a possible ex-
perimental setup, the analysis of the measured ra-
dial and orbital acceleration in order to acquire the
moment of inertia, the center of mass, the damping
factor and the period of the pendulum.

II. Example of experimental setup
We use an Arduino [4] and a two-axis accelerometer
sensor as measuring devices. The Arduino is an in-
teresting choice for an experiment, as it is an easy-
to-use and low-cost microcontroller, with a large
user community. Even if Arduino was not initially
developed as a physicist tool, it can be used in vari-
ous contexts of experimental physics activities (e.g.,
see references [5-10]).
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Figure 1: (a) An example of an experimental setup.
(b) An accelerometer sensor attached to the centerline
of the pendulum, with one of its axes parallel to the
centerline.

The experimental setup that we used here is
shown in Fig. 1(a). The accelerometer sensor is
a microelectromechanical inertial sensor which is
precisely calibrated by using the values +g, Og and
—g for each axis with g = 9.8 ms™2.

The pendulum used in this experiment is com-
posed of a bar on which masses can be attached to
different positions. The accelerometer is attached
to the bar and positioned in such a way that one of
its measurement axes lies parallel to the bar (Fig.
1(b)). Special care should be taken so that the
wires connecting the accelerometer to the board are
flexible enough in order not to damp the pendulum.

Figure 2 shows an example of data acquired by
the accelerometer. The main features of the graph
are:

e the radial acceleration measurement decreases
and goes to g as t approaches the infinity.

e when the radial acceleration reaches its maxi-
mum values, the orbital acceleration is essen-
tially equal to zero (inset of Fig. 2).

e the radial acceleration is asymmetric about the
straight line a g contrary to the orbital
acceleration that is symmetric about the line
a=0.
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Figure 2: Radial (red) and orbital (black) accelerations
measured by the accelerometer obtained with the ex-
perimental setup displayed in Fig. 1. Inset shows the
temporal evolution of both accelerations between 40s
and 45s. In order to have both curves on the same plot,
orbital acceleration is shifted by a constant offset of 9
in the inset.

e the period of the radial acceleration oscilla-
tions is twice that of the orbital acceleration
oscillations (inset of Fig. 2).

In the next section, we will present the theory
that explains these main features.

III. Theory

i. Expression of the acceleration compo-
nents measured by the accelerometer
sensor

Figure 3 shows a pendulum sketch with notations
that will be used throughout this paper. O is the
pivot point, G is the pendulum mass center and A
the accelerometer position. L and r stands for the
distance between O and G and O and A, respec-
tively. We note I, the moment of inertia of the
pendulum about the Oz axis.

Applying the angular momentum theorem to the
pendulum and considering viscous damping leads
to:

10 = —MgLsin0 — 0 (1)

where 6 is the angle between the pendulum axis

OG and the vertical axis, M is the mass of the sys-
tem and ~ is the coefficient of friction. We note
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Figure 3: Sketch of the pendulum and notations used
in the text. The pivot is at O, the center of mass at G
and the accelerometer sensor is at A.

I, = aML? where the numerical factor o depends

on the type of pendulum (o = 1 for a simple pen-

dulum and « # 1 for a physical pendulum). We

introduce the damping factor k = % to obtain:
——_sinf — 2x6

oL (2)

Forces acting on the proof mass (Msensor) inside
the accelerometer are its weight and the inertial
force due to its movement. Thus, the radial and or-
bital components of these forces in the non-inertial
reference frame of the pendulum are given by:

=9

()
(4)
The acceleration components, as measured by

the accelerometer at a distance r from the pivot,
are then given by:

N2
Fr = msensorre + Msensorg COS 0

Ft9 = _msensor'ra — Msensord sin ¢

()
(6)

ar =16% + gcos @
ag = fréfgsinﬂ

Including the expression of 6 (Eq. (2)) into the
expression of ay gives :

ag = g (% - oz) sin @ + 2kré (7)

We choose 6 = 6, and 6 = 0 as initial conditions
of the pendulum movement. We only consider here
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small damping (k << w) and the small angle ap-
proximation (g << %), which leads from Eq. (2)
to:

0 = Ope™"" cos(wt)
0 = —whoe " sin(wt)

0 = —w?0pe™"* cos(wt)

with the pendulum angular frequency w

Vws —k? and wo = y/9/ar. Thus, the acceler-

ation components measured by the accelerometer
for k << w and 0y << § are given by:

ar = rw?fie 2" sin’(wt)

11
+ g cos (Boe ™" cos(wt)) ()
ag = —2krwlpe” " sin(wt)
g (r : x (12)
+ o (Z - oz) sin (fpe"* cos(wt))

With 6y << 7, we can further approximate these
two expressions by:

ar = rw?fie 2" sin’(wt)

13
+ g (1 —05e > " cos®(wt)) (13)
ag = —2rkrwlpe” """ sin(wt)
9(r i (14)
+ o (L a) Boe™"" cos(wt)

Some comments can be made about Egs. (11)
and (12). We first focus on the radial acceleration
ar.

e cos(cos(x)) and sin(z) are both m-periodic
functions. So a, is a % periodic function with
T = %’r being the pendulum period. Indeed,
the pendulum reaches its maximum velocity
and so its maximum radial acceleration each
time 6 is equal to 0.

e gcos (Bpe "t cos(wt)) varies between between
gcos(fp) and g (blue curve in Fig. 4(b)) and
goes to g as t approaches infinity. Physically,
this function represents the projection of ¢
onto the pendulum axis OG.

o rw?fle= 2" sin?(wt) varies between rw?62 and
0 and the upper envelope of this function (red
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Figure 4: (a) Calculated radial acceleration versus time. (b) In red, graph of the rw?63e 2" sin?(wt) + g
contribution; in blue, graph of the gcos (foe " cos(wt)) contribution. L = 30cm, 6 = 15°, r = 45¢cm, Kk =
0.1s7! and a = 1 for both panels.

t(s) t(s)

Figure 5: (a) Calculated orbital acceleration versus time. (b) In red, graph of the £ (+ — a) sin (foe™"* cos(wt))
contribution; in blue, graph of the part —2xrwloe™ ' sin(wt). L = 30cm, fy = 15°, r = 45¢m, x = 0.1s™* and

a = 1 for both panels.

tion with T = %’T Indeed, the angular ac-

celeration 6 reaches its highest and lowest val-

curve in Fig. 4(b), note that it has been dis-
placed by g) decreases exponentially as e =2t

Physically, this function represents the acceler-
ation due to the radial centrifugal force felt by
the sensor (as expected, the acceleration due to
the radial centrifugal force is maximum when
the pendulum is vertical). This point and the
previous one explains the asymmetry of the ra-
dial acceleration about the straight line a,, = g,
as observed in Fig. 2.

ues each time the pendulum passes through its
highest points. This point explains that the
period of the radial acceleration is twice that
of the orbital one.

2 (£ — ) sin (Gpe ™" cos(wt)) goes to 0 as ¢
approaches infinity and the sin(cos(x)) func-
tion implies that the upper and lower envelope
of this part of the ap function are symmetric

We can now study the orbital acceleration ag: about the straight line of equation a = 0 (red
curve in Fig. 5(b)).
e sin(cos(x)) and sin(z) are both 2m-periodic

functions. Therefore, ag is a T-periodic func- o —2krwhpe "tsin(wt) goes to zero as t ap-
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Figure 6: Radial (red) and orbital (black) accelerations
obtained from Eqgs. (11) and (12) with 6y = 20°, L =
30cm, 7 = 34cm, o = 1.2 and k = 0.01s~!. Inset
shows the temporal evolution of radial (red) and orbital
(black) accelerations between 40s and 45s. In order to
have both curves on the same plot, orbital acceleration
is shifted by a constant offset of 9 in the inset.

proaches infinity. The upper and lower en-
velopes of this part of the ay function are sym-
metric about the straight line ap = 0 (blue
curve in Fig. 5(b)) and decrease exponentially
as e "t

Figure 6 displays the radial (red) and orbital
(black) accelerations obtained from Eqs. (11) and
(12). We can see that the main features inferred
from the data (Fig. 2) are well reproduced.

ii. Experimentally accessible quantities

The parameters describing the pendulum and its
motion can be derived from the measurements of
a, and ag.

e a,(t =0) = aymin = gcosby. Thus, the mea-
sured value of a, at t = 0 leads to the value of
0o .

e A fit to the measured a, upper envelope with
an exponential function allows us to determine
the damping factor k of the pendulum from
Egs. (11) and (12). While, for small deflection
angles 60, see Egs. (13) and (14), exponential
fit of any envelope of measured a, or ag allows
us to determine the damping factor.

e The sensor position OA can be measured with
great accuracy. Thus, the position of the pen-
dulum center of mass and moment of inertia
are the two quantities which are difficult to
determine experimentally. Here, we use the fit
of the temporal evolution of a, and ag to de-
termine the product aL.

iii. Impact of a and r on the measured ra-
dial and orbital accelerations

Figure 7 displays the evolution of the radial and
orbital accelerations with time for different values
of the moment of inertia (from o = 1 (Panel (a)) to
a = 2.5 (Panel (d))). At the difference of the radial
acceleration, we can see that the orbital accelera-
tion depends strongly on a. Indeed, ay expression
at t = 0 leads to ag(t = 0) = (JZr — 1) gsinb,
which is an inverse function of . We can also note
that ag(t = 0) < 0if a > F and ag(t = 0) > 0 if
a < 7. Thus, value of ay at t = 0 gives information
on the «a value.

Figure 8 shows the evolution of the radial and
orbital accelerations with time for different values
of r. The distance OA increases from Panel (a)
to Panel (d). As expected, the amplitude of the
radial acceleration increases with larger O A values
as the centrifugal force acting on the proof mass
increases and the amplitude of the orbital acceler-
ation decreases with larger OA values as the rate
of variation of 6 decreases with this distance.

In particular, acceleration components measured
by the accelerometer attached to the position of the
point O are given by:

(15)
(16)

ar = gcos (Bpe " cos(wt))

ag = —gsin (Gpe ™" cos(wt))

In this case, the only force acting on the mass inside
the accelerometer is its weight and the expressions
of the acceleration do not depend on «. Accelerom-
eter sensor is used in this case as an angular posi-
tion sensor.

We also note that the acceleration components
measured by the accelerometer attached to the po-
sition r = Lo are given by:
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Figure 7: The calculated radial (red) and orbital (black) acceleration with time with o« = 1 (a), @ = 1.5 (b),
a =20 (¢) and a = 2.5 (d). In order to have both curves on the same plot, orbital acceleration is shifted by a

constant offset of 9.2. L = 30cm, 0y = 15°, r = 45cm and « = 0.1 for all panels.
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Figure 8: The calculated radial (red) and orbital (black) accelerations with time for different positions of the
accelerometer relative to the center of mass G. In order to have both curves on the same plot, the orbital
acceleration is shifted by a constant offset of 9.2. The accelerometer positions are (a) r = Ocm, (b) r = 30 cm,
(¢) r=45cm, (d) r =60cm. L =30cm, 0y = 15°, a =2 and « = 0.1 for all panels.
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Figure 9: Experimental setup used to study a bar pen-
dulum.

a, = aw?02e > sin?(wt)
it (17)
+ g cos (Bpe ™" cos(wt))

ap = —2kaLwlye " sin(wt) (18)
In this case, component of 6 due to the gravity
force is counterbalanced by the orbital component
of the force of gravity acting on the accelerometer
sensor. Thus, ag is then directly proportional to
the pendulum angular velocity.

After having shown that Eqgs. (11) and (12) ex-
plain the features observed experimentally, we will
now use them to retrieve the pendulum parameters
K, o and L for different experimental setups.

IV. Example of data analysis

i. Example with a pendulum bar

We first focus on the pendulum shown in Fig. 9
to derive its physical parameters. We use a bar
of a 45cm length and mass 45g with the pivot at
16.5 cm from the center of mass and the accelerom-
eter at 33 cm.

Figure 10 shows the radial and orbital accelera-
tions measured by the accelerometer after the pen-
dulum has been displaced from the equilibrium po-
sition to an initial angle of 22°.

10, ART.
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Figure 10: Radial (red) and orbital (green) accelera-
tions measured by the accelerometer in the configura-
tion shown in Fig. 9. Solid lines are the best fit of the
data with x and « as free parameters. The best fit is
given by 1/k = 12.2s and o = 1.56.

We have analyzed the data using Egs. (11) and
(12) with x and « as free parameters. The results
of the fit are shown as black curves in Fig. 10.
We have derived the best fit for 1/k = 12.2s and
a = 1.56.

Assuming the pendulum to be a simple homoge-
neous slab, we calculate that the inertia moment
of the bar about the rotation axis A is equal to
1.93 x 1072 kg m?, which leads to o = 1.62. The
holes in the bar, which are used for attaching the
masses, together with the mass of the accelerom-
eter, explain the difference between this and with
the a value obtained from the data fit. This exper-
iment allows us to determine with a good accuracy
the moment of inertia of the pendulum.

ii. Retrieval of the mass center position

The pendulum of the previous subsection is a sym-
metric bar, thus, its mass center position can be
determined precisely. In the general case, the mass
center position can be difficult to determine and we
can fit the data by using Egs. (11) and (12) with &,
« and L as free parameters and infer the position
of the center of mass.

As an example of such analysis, we use a pen-
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Figure 11: Experimental setup used to study compound
pendula, with added masses.

dulum composed of a bar on which several masses
can be attached to at different positions to acquired
data that corresponds to pendulums of different
values of o and L (Fig. 11 (a) and (b)).

Figure 12 (a) and (b) displays the radial and or-
bital accelerations measured by the accelerometer
after each pendulum shown in Fig. 11 has been
displaced by an initial angle of 20.5°.

We fit the data by using Eqgs. (11) and (12) with
Kk, a and L as free parameters. Results of the fit are
shown as the black curves in the insets of Fig. 12.
Best fit are obtained with 1/x = 111s, o = 1.162
and L = 0.293m for the pendulum of Fig. 11(a)
and 1/k =101s, @ = 6.55 and L = 0.074m for the
pendulum of Fig. 11(b).

For the examples displayed in Fig. 12, the evo-
lution of the orbital acceleration from Panels (a) to
(b) shows an increase of a, which is consistent with
the fact that pendulum configuration goes from a
configuration close to a simple pendulum («a ~ 1
Fig. 11(a)) to a compound pendulum (« > 1 Fig.
11(b)).

Figure 12 shows that the angular acceleration (in
green) is much more sensitive to the value of « than
the radial acceleration (in red). Therefore, orbital
acceleration is a good quantity to measure and to

fit in order to determine the moment of inertia of
a pendulum.

iii. Impact of r on the acquired data

We have shown in section III that the orbital accel-
eration is very sensitive to the accelerometer sen-
sor position with respect to the pendulum rotation
axis. As this position is precisely known, we can
perform several measurements with different posi-
tions of the accelerometer to improve the accuracy
and/or the precision of the derived pendulum pa-
rameters. As an example of such analysis, we use
the experimental setups shown in Fig. 13.

Figure 14 (a) and (b) display the radial and or-
bital accelerations measured by the accelerometer
after each pendulum shown in Fig. 13 has been
displaced by an initial angle of 20.5°.

Fits of the data using Egs. (11) and (12) with
Kk, o and L as free parameters are shown as black
curves in Fig. 14. Best fit are obtained with 1/x =
111s, @ = 1.162 and L = 29.3 cm for the pendulum
of Fig. 13(a) and with 1/k = 100s, o = 1.162 and
L =29.2cm for the pendulum of Fig. 13(b).

The position of the accelerometer does not af-
fect the calculated values of the moment of inertia
of the pendulum and only slightly affects the cen-
ter of mass position. The new configuration of the
wires connecting the accelerometer in Fig. 13(b)
changes slightly the xk value. Thus, performing a
second measurement with a different position of the
accelerometer allow us to be more confident in the
results retrieved from the first one.

We can also note that the orbital acceleration
increases with lower OA values, therefore the or-
bital acceleration fit precision is better when the
accelerometer is in the position of Fig. 13(b), while
the precision of the radial acceleration fit is better
when the accelerometer is in the position of Fig.
13(a).

V. Conclusions

We have shown that the pendulum experiment ana-
lyzed with an accelerometer sensor leads to a theo-
retical study richer than the classical one. We have
derived theoretical expressions for the radial and
orbital acceleration data recorded by an accelerom-
eter and separated the contributions from the pen-
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Figure 12: Radial (red) and orbital (green) accelerations measured by the accelerometer. (a) and (b) correspond
to the setups displayed in Fig. 11 (a) and (b), respectively. Insets in (a) and (b) show the temporal evolution of
the radial (red) and orbital (green) accelerations and the best fit (black) between 35s and 45s. In order to have
both curves on the same plot, orbital acceleration is shifted by a constant offset of 9 in the inset of (a) and by 8

in (b).

Figure 13: Experimental setup used to study the im-
pact of the acceleration sensor position on the acquired
data.

dulum angular motion and the gravitational force
on the proof mass.

We have also shown that the orbital acceleration
is an interesting data to retrieve the moment of
inertia of a pendulum.

The possibility to have different positions of the
sensor allows us to perform several measurements
with the same pendulum to improve the accuracy
and/or the precision of the derived pendulum pa-
rameters.

In this paper, we have only focused on the clas-
sical pendulum but the device used here could also
be applied to more complex systems such as chaotic
pendulums.
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Figure 14: Radial (red) and orbital (green) accelerations measured by the accelerometer. (a) and (b) correspond
to the setups displayed in Fig. 13(a) and (b), respectively. Insets in (a) and (b) show the temporal evolution of
the radial (red), and orbital (green) accelerations and the best fit (black) between 35s and 45s. In order to have
both curves on the same plot, orbital acceleration is shifted by a constant offset of 9 in the insets of (a) and (b).
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