[1] H E Grecco, O E Martinez, Experimental determination of distance and orientation of metallic nanodimers by polarization dependent plasmon coupling, Pap. Phys. 2, 020010 (2010).

[2] H E Grecco, O E Martinez, Distance and orientation measurement in the nanometric scale based on polarization anisotropy of metallic dimmers, Opt. Exp. 14, 8716 (2006).

[3] H Wang, B M Reinhard, Monitoring simultaneous distance and orientation changes in discrete dimers of DNA linked gold nanoparticles, J. Phys. Chem. C 113, 11215 (2009).

[4] P K Jain, X Huang, I H El-Sayed, M A El-Sayed, Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems, Plasmonics 2, 107 (2007).

[5] S J Oldenburg, R D Averitt, S L Westcott, N J Halas, Nanoengineering of optical resonances, Chem. Phys. Lett. 288, 243 (1998).

[6] C J Murphy, T K Sau, A M Gole, C J Orendorff, J Gao, L Gou, S E Hunyadi, T Li, Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications, J. Phys. Chem. B 109, 13857 (2005).

[7] L S Slaughter, Y Wu, B A Willingham, P Nordlander, S Link, Effects of asymmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers, ACS Nano 4, 4657 (2010).

[8] C L Nehl, H Liao, J H Hafner, Optical properties of star-shaped gold nanoparticles, Nano Lett. 6, 683 (2006).

[9] D K Lim, K S Jeon, H M Kim, J M Nam, Y D Suh, Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection, Nat. Mater. 9, 60 (2010).

[10] N Harris, M D Arnold, M G Blaber, M J Ford, Plasmonic resonances of closely coupled gold nanosphere chains, J. Phys. Chem. C 113, 2784 (2009).