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Theory of terahertz Smith–Purcell radiation from a cylindrical grating

Z. Rezaei,1∗ B. Farokhi1

An analysis of an annular electron beam propagating along a cylindrical grating with
external magnetic field B0 is presented. The grating comprises a dielectric in its slots. The
dispersion relation of the modes is derived. The results demonstrate that the dielectric
shifts the frequencies of the system modes to smaller values. The growth rates of the
modes which are in phase with the beam are also considered. It is found that the decline
in the growth rate is brought about by the dielectric. In addition, increasing the thickness
of the dielectric and decreasing the height of the slots cause it to rise. The effect of beam
thickness on growth rate is considered too. This is shown to increase and then fall as
beam thickness increases. These results show that utilizing cylindrical grating loaded with
dielectric has a promising effect on developing new kinds of compact high-efficient THz
free-electron lasers based on Smith–Purcell radiation.

I. Introduction

Plasma and beam devices are employed in ampli-
fiers, oscillators, charged particle accelerators, and
high power sources of electromagnetic radiation.
They are also used to transport electromagnetic
energy and charged particles, and for basic plasma
physics research [1].

When the electron beam passes near the grat-
ing surface (periodic structure), spontaneous radi-
ations may be excited. This periodic structure can
be a metallic corrugated surface with spatial pe-
riodicity d and corrugation height h. This radi-
ation was first observed by Smith and Purcell [2]
in 1953. The Smith–Purcell radiation (SPR) is a
tunable electromagnetic source, which is described
by
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λ =
d

n

(
1

β
− cos θ

)
, (1)

where λ is the wavelength of the radiated wave from
the grating, n is the order of this radiation, β is the
relative velocity of the charge, and θ is the direction
of the radiated wave with respect to this charge.

In the far-infrared or terahertz (THz) region, sev-
eral theories have been proposed to describe the
operation of SPR, and also its application, in a free
electron laser (FEL). Schachter and Ron proposed a
theory based on the interaction of an electron beam
with a wave traveling along the grating. They used
some approximation to evaluate the reflection ma-
trix of the grating and found a cubic equation for
growth rate, which is consistent with Cherenkov
FEL [3]. Urata et al. considered this phenomenon
experimentally, and observed high power coher-
ent superradiant SP emission in the far infrared
(30−100 µm) region [4]. SP radiation in the ultra-
violet and near infrared regions was also detected
by Y. Neo et al. [5]. Kim and Song, using the inter-
action of the electrons with a traveling wave, solved
the initial problem of the sheet-beam and found a
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quadratic equation for the exponential growth rate
[6]. Later Andrews and Brau explained Urata’s ex-
periment as bunching of the beam electrons due to
the interaction of an evanescent wave with this suf-
ficiently high-current beam. They also derived the
gain of this radiation, which had cube root depen-
dence on the beam current [7]. Also in 2004, Freund
et al. [8] developed a linear theory of a grating-
coupled Smith–Purcell traveling wave in a paral-
lel plate wave guide. They found the linearized
dispersion relation for the vacuum structures and
the wave–particle interaction in an arbitrary mag-
netic field. Then, D. Li et al. performed simulation
and confirmed the theory of Andrews and cowork-
ers about the mechanism of superradiation, which
happens at integer multiples of the bunching fre-
quency [9]. In addition, the growth rate of SP–FEL
was considered by D. N. Klochkov et al. and found
to be proportional to the square root of the sheet
electron beam current [10].

Loading dielectric is an important physical mech-
anism which has been successfully applied to some
high power microwave and terahertz systems. A
dielectric-loaded grating for 3D Smith–Purcell rect-
angular device is proposed by Cao et al. [11, 12].
They used 3D particle-in-cell simulation to find the
dispersion relations at the operating point, and the
growth rates. W. Liu et al. considered a rectangu-
lar grating filled with dielectric. They obtained the
minimum current for starting the SP oscillator and
deduced that the dielectric will decrease this cur-
rent. Also, they explained the effect of changing
the beam parameters on the growth rate [13].

There is no edge effect issue in cylindrical grat-
ing driven by an annular beam. Therefore, as the
cylindrical gratings are more efficient, with fewer
losses than rectangular ones, they are more appli-
cable in radiation sources and considered in many
types of research. H. P. Bluem et al. worked on
a cylindrical grating exposed by an annular beam.
They observed both superradiance and SP radia-
tion [14]. S. Hasegawa et al. considered a cylin-
drical corrugation in a waveguide. They reported
BWO operation, excited by a cylindrical surface
wave in k-band signal region. Also, they increased
the voltage of the beam and observed SP radiation
in the u-band and E-band of frequency, which was
the result of interaction between the higher modes
of the waveguide [15].

Here we present a linear theory of an annular

Figure 1: The cross section view of the grating, filled
with dielectric. In addition, the annular electron beam
is drifting along the axial direction with an externally
magnetic field B0.

electron beam, magnetized, propagating along a
cylindrical metallic grating. The slots of this grat-
ing are filled with dielectric. The results of this pa-
per highlight the basic problem of developing SP–
FEL based on cylindrical grating loaded with di-
electric. For simplicity, we assume that the system
is uniform in the direction parallel to the slots of
the grating. The fundamental dynamical equations
are presented in section II. The results and discus-
sion are given in section III. The conclusions are
considered at the end.

II. Theory

Consider a cylindrical grating which is made of an
ideal metal. The inner and outer radii of the grat-
ing are R1 and R2, respectively as illustrated in
Fig. 1. As shown in this figure, d denotes the pe-
riod of the grating, l is the length of the slot open-
ings (which will be filled with dielectric) and h is
the depth of the slots (R2 −R1). An annular elec-
tron beam with inner radius a1 and outer radius a2

= a1 + ∆ in a uniform static axial magnetic field
B0 is drifting with velocity v0 along the axis of the
grating and very close to it. We assume that there
is no transverse disturbed movement in the electron
beam. In addition, for simplicity, we assume that
the system is uniform in the ϕ direction.

i. Dispersion relation

The dispersion relation of the modes of this sys-
tem is the result of considering Maxwell’s equations
with the continuity equation and the relativistic
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momentum equation for electron beams:

∇×E = −∂B
∂t

, (2)

∇×B = µJ +
1

c2
∂E

∂t
,

∂n

∂t
+ ∇ · (nv) = 0,

γ3m0n0

[
∂

∂t
v + v0 ·∇v

]
= −en0(Ez + v ×B).

As a consequence, we expand all quantities in terms
of an unperturbed part plus a small perturbation
as follows: n = n0 +δn, v = v0 +δvz, J = J0 +δJ ,
E = δE and B = B0ẑ + δB, where n and v are
the electron density and velocity, respectively. Un-
perturbed beam density, n0, is uniform and time-
independent, δE and δB are the electric and mag-
netic fields, J = env is the density of current,
γ = (1 − v2/c2)1/2 is the relativistic factor, and
c is the velocity of light in free space.

The perturbed density of current is

δJ = −e(nδvz + δnv0), (3)

which, with the help of the continuity and momen-
tum equations is defined as

δJ =
iωε0

γ3

ω2
p

(ω − knv0)2
δEz. (4)

Here, ω2
p = ne2

m0ε0
is the relativistic beam plasma

frequency.
The fields in the electron beam part will be de-

rived from this wave equation

∇2δB +
ω2

c2
εΠδB = 0, (5)

where εΠ = 1− ω2
p

γ3(ω−knv0)2 is the relative dielectric

constant in the electron beam [12].
Also, in region 1 and 3, where there is no electron

beam, the electromagnetic fields are the solution of
the wave equation of this form

(∇2
⊥ + β2

n)

{
δEz
δBz

= 0. (6)

We suppose that the TM mode propagates in
this device. And, by applying Floquet’s theorem,
the radiation fields take the general form

δf(r, t) =

∞∑
n=0

δfn(r)ei(knz−ωt), (7)

where fn, kn = k0 + 2nπ
d , and ω represent the

Fourier coefficient, wave number in the axial direc-
tion and frequency of the nth mode, respectively.

Region 1

This region is the vacuum above the electron beam.
So the fields in a2 < r can be expressed as below

Ez(r, z) =

∞∑
n=−∞

bnK0(βnr)e
i(knz−ωt), (8)

Bϕ(r, z) =

∞∑
n=−∞

iω

c2βn
nnK1(βnr)e

i(knz−ωt). (9)

Region 3

In this region, R2 < r < a1, the fields are

Ez(r, z) = (10)
∞∑

n=−∞
[cnl0(βnr) + dnK0(βnr)]e

i(knz−ωt),

Bϕ(r, z) = (11)
∞∑

n=−∞

−iω
c2βn

[cnl1(βnr)− dnK1(βnr)]e
i(knz−ωt).

Region 2

In the electron beam region, a1 < r < a2, the
evanescent waves are the solution of Eq. (5), and
have the following forms

Ez(r, z) = (12)
∞∑

n=−∞

i

rωε0εΠ
{gn[rκ1nl1(κ1nr) + l0(κ1nr)]

+ fn[−rκ1nK1(κ1nr) +K0(κ1nr)]}ei(knz−ωt),
Bϕ(r, z) = (13)

∞∑
n=−∞

µ{gnl0(κ1nr) + fnK0(κ1nr)}ei(knz−ωt).

Where, κ1n =
√
k2
n − ω2εΠ/c2.
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Regions 4 and 5

The slot openings (region 4) are filled with dielec-
tric εr. The solutions of the wave equation in this
region are

Ez(r, z) =

∞∑
m=0

em

[
H0(τmr) (14)

−H0(τmR1)

G0(τmR1
G0(τmr)

]
cos
(mπ
l
z
)
,

Bϕ(r, z) =

∞∑
m=0

em
iωεr
c2τm

[
H́0(τmr) (15)

−H0(τmR1)

G0(τmR1
Ǵ0(τmr)

]
cos
(mπ
l
z
)
.

Where,

H0(τmr) =

{
J0(τmr)
l0(τ́mr)

,

G0(τmr) =

{
N0(τmr)
K0(τ́mr)

, (16)

H́0(τmr) =

{
−J1(τmr)
l1(τ́mr)

,

Ǵ0(τmr) =

{
−N1(τmr)
−K1(τ́mr)

, (17)

kz =
mπ

l
, τm =

√
εr
ω2

c2
− k2

z > 0,

τ́m =

√
k2
z − εr

ω2

c2
> 0. (18)

As we assumed k0d < 2π, it is enough to keep
just one mode (m = 0) in the slots, so the standing
waves will be the fields in this part of the system.
Also, there is no field in the ideal metal of region
5.

After applying the continuity conditions for the
fields in the border of regions 1–2, 2–3 and 3–4, the
dispersion relation will be as below

R(ω, kn, ε
Π) = 0. (19)

In which,

R(ω, kn, ε
Π) =

∞∑
n=−∞

{
−1

k2
nβnd

[2− 2 cos(knl)]

×
[
H0(τ0R2)− H0(τ0R1)

G0(τ0R1)
G0(τ0R2)

]
× αaI1(βnR2) + αbK1(βnR2)

αaI0(βnR2)− αbK0(βnR2)
(20)

− εrl

τ0

[
H́0(τ0R2)− H0(τ0R1)

G0(τ0R1)
Ǵ0(τ0R2)

]}
,

αa =− α1α6 + α2α5, αb = −α3α6 + α4α5,

α1 =
K1(βna1)

βnεΠa1
[a1κ1nI1(κ1na1) + I0(κ1na1)]

+K0(βna1)I0(κ1na1), (21)

α2 =
K1(βna1)

βnεΠa1
[−a1κ1nK1(κ1na1) +K0(κ1na1)]

+K0(βna1)K0(κ1na1), (22)

α3 =− I1(βna1)

βnεΠa1
[a1κ1nI1(κ1na1) + I0(κ1na1)]

+ I0(βna1)I0(κ1na1), (23)

α4 =− I1(βna1)

βnεΠa1
[−a1κ1nK1(κ1na1) +K0(κ1na1)]

+ I0(βna1)K0(κ1na1), (24)

α5 =
K1(βna2)

βnεΠa2
[a2κ1nI1(κ1na2) + I0(κ1na2)]

+K0(βna2)I0(κ1na2), (25)

α6 =
K1(βna2)

βnεΠa2
[−a2κ1nK1(κ1na2) +K0(κ1na2)]

+K0(βna2)K0(κ1na2). (26)

If there is no beam (α1 = α5, α2 = α6), the dis-
persion relation will become as

R(ω0, k0, 1) =

∞∑
n=−∞

{
1

k2
nβnd

[2− 2 cos(knl)]

×
[
H0(τ0R2)− H0(τ0R1)

G0(τ0R1)
G0(τ0R2)

]
K1(βnR2)

K0(βnR2)

− εrl

τ0

[
H́0(τ0R2)− H0(τ0R1)

G0(τ0R1)
Ǵ0(τ0R2)

]}
= 0. (27)

This is similar to the dispersion relation in [14] and
[16] in the limit of εr = 1.
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Figure 2: (a) Comparison of dispersion relations for different εrs (solid curves). The beam line with voltage
20 kev is also plotted for reference. The growth rate (δ) for each curve, near the intersection (the circles), is
indicated by a dash line. (b) The effect of relative dielectric εr on the growth rate.

ii. Growth rate

So far, the dispersion relation of the modes in this
configuration has been derived. One of these modes
can grow if it is in resonance with the electron
beam. So, we assume that the frequency of this
mode is ω = ωr + δ. Then the Taylor expansion of
the dispersion relation about the synchronous point
(ωr, kr) will become

R(ω, kn, ε
Π) = R(ωr, kr, 1) (28)

+ (ω − ωr)
∂R(ω, kn, ε

Π)

∂ω

∣∣∣∣
(ωr,kr,1)

+ (εΠ − 1)
∂R(ω, kn, ε

Π)

∂εΠ

∣∣∣∣
(ωr,kr,1)

.

By assuming that δ is small, the equation below
will be found

(
R0x

2 −
ω2
p

γ3
ŔεΠ

)
+ (2xR0 + x2Ŕω)δ

+ 2xŔωδ
2 = 0. (29)

In which,

x = ωr − krv,

ŔεΠ =
∂R(ω, kn, ε

Π)

∂εΠ

∣∣∣∣
(ωr,kr,1)

,

Ŕω =
∂R(ω, kn, ε

Π)

∂ω

∣∣∣∣
(ωr,kr,1)

,

R0 = R(ωr, kr, 1). (30)

The growth will occur if δ, the solution of Eq. (29)
is imaginary and positive.

III. Results and discussion

By assuming no beam in the system, the disper-
sion relation is calculated by solving Eq. (27) nu-
merically. The grating parameters are as follows:
R1 = 240 µm, R2 = 400 µm, l = 80 µm, d = 160
µm, a1 = 400 µm, a2 = 480 µm and the beam
energy is 20 kev, corresponding to the parameters
chosen by Y. Zhou et al. [16]. The effect of εr on
the dispersion relation has been shown in Fig. 2(a).
It is clear that increasing the εr results in smaller
height of the dispersion relation. This means that
the modes are propagating with smaller velocities
in the system. The intersection points of beam-
wave also move down. In this figure, the corre-
sponding growth rate for each curve is indicated by
dash lines (of the same color). Maximum growth
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rates occur in the vicinity of the synchronous points
(ωr = krv0), and have the values: 1.279, 1.129 and
1.065 for εr = 1, 1.5 and 2.7, respectively. The
influence of dielectric on the growth rate is clearer
in Fig. 2(b), which indicates that dielectrics with
higher relative permittivities cause smaller values
for the growth rate. The grating parameters are
considered in Fig. 3, Fig. 4 and Fig. 5, when
εr = 2.7.

In Fig. 3 the slot depth has been changed. As
depth increases, the dispersion relation becomes
flatter, indicating that the effect of grating is in-
creasing. The normalized maximum growth rate
happens when resonance between the beam and
the modes is possible (the circles). So, in these
points δ = 1.192, 1.066 and 0.493 when h = 100
µm, 160 µm and 250 µm, respectively. Figure 4
indicates how dielectric thickness has an effect on
growth rate. Again, lower frequency modes result
from increasing dielectric thickness. However, this
time the growth rate will increase by this effect:
δ = 0.959, 1.232 and 1.295 for l = 30 µm, 80 µm
and 110 µm, respectively.

The effect of beam thickness (∆) on growth rate
is depicted in Fig. 5. First, increasing ∆ causes the
growth rate to rise. Its maximum value is 1.066 at
∆ = 80 µm. This happens because more electrons
can participate in the beam wave interaction. Then
the growth rate falls. This can be justified by the

Figure 3: Comparison of dispersion relation for different
grating heights, when εr = 2.7. The growth rate cor-
responding to each frequency curve is plotted by dash
lines, and maximum values are indicated at the circle
points.

Figure 4: Comparison of the dispersion relations (solid
lines) and the growth rates (dash lines) for different
thicknesses of the dielectric εr = 2.7.

fact that although the thickness is increasing, the
electrons which are far from the grating contribute
less to the interaction.

IV. Conclusions

In this paper, a metallic cylindrical grating filled
with a dielectric is proposed. The dispersion re-
lation of the modes propagating in this configura-
tion with an annular electron beam is derived. It is
shown that the dielectric causes modes with smaller
frequencies, in comparison with results when it is
absent. Then, the growth rate of modes which

Figure 5: Dependence of the growth rate on beam thick-
ness. εr = 2.7, R1 = 240 µm, R2 = 400 µm, l = 80 µm,
d = 160 µm, a1 = 400 µm.
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are in resonance with the beam is considered. It
is found that the growth rate is under the influ-
ence of dielectric relative permittivity εr, the depth
of the slots of the grating and the thickness of
the dielectric (the width of the slots). A lower
growth rate is the result of increasing the parame-
ters of the dielectric relative permittivity and slot
depth, and decreasing the thickness of the dielec-
tric. Also, beam thickness can increase and de-
crease the growth rate, depending on its amount.
As we can see, by changing the grating parame-
ters, as well as dielectric permittivity and thick-
ness, the growth rate and operating frequencies of
the device can be controlled. So, it is possible to
make SP–FELs with the desired frequencies and
powers. These results can be of considerable inter-
est for THz wave source research.
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