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Further results on why a point process is effective for estimating
correlation between brain regions

I Cifre1,2∗, M Zarepour3,4, S G Horovitz5, S A Cannas3,4†, D R Chialvo2,4, 6

Signals from brain functional magnetic resonance imaging (fMRI) can be efficiently rep-
resented by a sparse spatiotemporal point process, according to a recently introduced
heuristic signal processing scheme. This approach has already been validated for relevant
conditions, demonstrating that it preserves and compresses a surprisingly large fraction of
the signal information. Here we investigated the conditions necessary for such an approach
to succeed, as well as the underlying reasons, using real fMRI data and a simulated dataset.
The results show that the key lies in the temporal correlation properties of the time series
under consideration. It was found that signals with slowly decaying autocorrelations are
particularly suitable for this type of compression, where inflection points contain most of
the information.
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versidad Nacional de Córdoba, Ciudad Universitaria,
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I. Introduction
The large-scale dynamics of the brain exhibit a
plethora of spatiotemporal patterns. An impor-
tant methodological challenge is to define adequate
coarse-graining of the brain imaging data which
comprises thousands of the so-called BOLD (“blood
oxygen level dependent”) time series. The usual
analysis aims at identification of bursts of corre-
lated activity across certain regions, which requires
extensive computations, complicated in part by the
large size of the data sets.

A decade ago it was discovered that this type of
problem can be simplified efficiently by using only
the timings of the peak amplitude signal events;
i.e., converting the raw continuous signal into a
point process (PP) [1–7]. Subsequent work using
similar approaches [8–14] further confirmed that
the method entails large compression of the orig-
inal signals without significant loss of information.
Overall, these findings not only suggest a way to
speed up computations, but most importantly high-
light the need to clarify which aspects or features of
the brain imaging signals contain the most relevant
information.
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Figure 1: The basic aspects to consider in defining the
point process of the BOLD signal. The traces on panel
B are examples of raw time series (j) of fMRI BOLD
signals at three brain locations (called “voxels”). Time
points are selected at the upward threshold crossings
or the peaks of the signal (filled circles). The tempo-
ral co-occurrence of these points defines co-activation
matrices for different lengths of time (graphs in C ),
which can be further averaged to estimate the correla-
tion matrix for the entire time T of the system under
study.

The present work is dedicated to identifying
the reasons underlying the effectiveness of this ap-
proach. The results will show that the key lies in
the temporal correlation properties of the time se-
ries under consideration: signals with temporal cor-
relations are particularly suitable for this type of
compression because inflection points contain most
of the information.

The paper is organized as follows: in the next
section the point process is defined and a simple
example is presented. Section 3 discusses the main
reason the point process works, emphasizing the
relevance of the BOLD autocorrelations. This re-
sult is further tested in Section 4 using ground-
truth simulated BOLD data in which the autocor-
relation is altered. The paper closes with a brief
discussion to summarize the relevance of the main
conclusion.

II. Definitions and examples

The basic steps that have been used [1–4] to de-
fine the point process in brain signals are summa-
rized in Fig. 1. The raw data consist of time series
recorded from the brain using functional magnetic
resonance imaging (fMRI) corresponding to the ac-
tivity of one of many thousands of small brain re-
gions. It is accepted that this imaging technique
measures a “blood oxygen level-dependent” signal
(i.e., “BOLD”) in each small region, giving an esti-
mation of the blood oxygen saturation, which itself
is proportional to local neuronal activity.

The point process can be defined in different
ways, but for the reasons discussed later, the end
results are equivalent. As shown in Fig. 1, time
points can be selected at the upward threshold
crossings (here at unity) of the signal (filled cir-
cles). A second approach is to construct the point
process by selecting the local peaks and/or valleys
of the BOLD time series. For ease of discussion,
we will deal with the second option in this paper.
The temporal co-occurrence of the points defines
the co-activation matrix (bottom graphs), which
can be further averaged to estimate the correlation
matrix of the system under study. Figure 2 illus-
trates, for those unfamiliar to the subject, three
examples of typical BOLD time series that are usu-
ally recorded from the brain. From visual inspec-
tion it is already apparent that they are smooth
traces, exhibiting temporal correlations, as will be
further discussed later. There are also spatial cor-
relations, for instance between the top two traces,
which is evidenced in the images’ heat map between
counter-lateral regions.

A qualitative comparison of how well it works:
It has already been established, in different cir-
cumstances [2–4], that the co-activation matrix ob-
tained with the point process method is very simi-
lar to the correlation matrix computed from the full
(i.e., continuous) BOLD signal. Figure 3 shows an
example of a correlation matrix constructed from
the point process computed from a subject while
resting (data fully described in [4]). The results
demonstrate that as few as 4 points are already suf-
ficient to define clusters of co-activation, as demon-
strated previously in [2–4]. In addition, the results
here show how de-activations (i.e., blueish colors)
can also be evidenced by the PP approach.
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Figure 2: Right: Examples of typical BOLD time series
from three selected sites in the brain. The dashed box in
the middle time series indicates a portion of the signal
used later in the analysis presented in Fig. 4. Left:
Images correspond to a snapshot of activity amplitudes
(top), the correlations between the three selected seeds
(red dotted circles) and the rest of the brain (middle
three images), and the corresponding brain structural
slice at MNI coordinate z=10 (bottom). The MNI x, y,
z coordinates are -31 -95 10, respectively, for the top
trace, 43 -73 10 for the middle trace and -10 -31 10 for
the bottom trace.

III. Why does it work? A simple theory

As discussed previously, the example in Fig. 3 im-
plies a large compression; the question then is why
a few points are enough to compute results simi-
lar to those obtained with the full signal. A simple
visual inspection of the BOLD traces reveals that
the type of signals we are dealing with are tem-
porally correlated. This is very well known; the
neuronal activity is temporally and spatially corre-
lated, and furthermore, the activity is convoluted
by the hemodynamic transfer function which in it-
self introduces additional temporal correlations.

Therefore, for any time series with these prop-
erties, it seems natural to think that the most in-
formative points are those in which its derivative
changes sign. The other points are redundant since
they can be predicted, to a certain degree, by a lin-
ear estimator. This is illustrated in Fig. 4, using as
an example two minutes of BOLD recording (nor-
malized by its standard deviation σ). After setting
a threshold ν, the inflection points larger than a
given ν value are identified. These points consti-
tute the marked point process in question.

Figure 3: Example of correlation maps obtained from
the raw BOLD time series of length n=235 (right panel)
and from the derived point process (left panels) for dif-
ferent numbers of points (n=4,7,14,26). The left images
represent, as “heat maps”, the co-activation of the seed
(located at MNI coordinates x=4, y=-60, z=18) with
respect to each voxel. Note that a few points already
suffice to identify well-defined clusters that are 1-4 stan-
dard deviations away from chance co-activations. The
right panel corresponds to the Pearson correlation com-
puted from the entire length of the raw BOLD time
series. Red/blue colors label positive/negative point
co-activations in the case of the left maps and posi-
tive/negative correlations in the case of the right map.

Now we ask how much of the raw signal is left
out if these inflection points are used to extrapo-
late a piece-wise linear time-series. To answer this
we analyze BOLD time series from the brain of a
subject during an experiment in which fMRI data
are collected at rest [3]. We proceed to compute
the linear correlation between the two time series,
the raw and the piece-wise linear one. In panels D
and E the results are shown for different values of
threshold ν (in units of σ) as well as for the correla-
tion of the time series, estimated by the value of the
first autocorrelation coefficient γ. Panel D shows
that as the BOLD signal autocorrelation increases,
the similarity between the piece-wise linear and the
raw signals increases, evaluated in two ways: by the
root mean squared error (rmse) and by the linear
correlation 〈r〉 between the two time series. As ex-
pected, raising the threshold ν above zero produces
an increasing loss of information about the signal,
which is reflected in a monotonic increase in the
rmse and a decrease in the 〈r〉 values (see Panel
E).
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Figure 4: Why it works: The trace in Panel A is an example of a two-minute recording of a BOLD brain signal
during rest (denoted by the dotted box in Fig. 2). The point process is defined by the timing of the peaks and
valleys larger than a given threshold, (two are indicated here by arrows). The points, in this case, are only
six (dots depicted in the bottom trace) out of the 120 samples of the original time series. The ability of these
six points to preserve information about the original BOLD signal can be estimated by its similarity with a
piece-wise linear time series (dashed red lines) constructed by joining the peaks and valleys. Horizontal dotted
lines in Panel A denote the threshold for the example. Panels D and E correspond to the computed similarity
between the BOLD signals and the piece-wise linear signals (evaluated by the correlation 〈r〉 and rmse values)
for different autocorrelation γ and threshold ν values. Panels B and C correspond to similar calculations using
synthetic time series. For Panels B and D ν was fixed at 1. For Panels C and E γ was 0.85.

According to the present hypothesis, the func-
tional dependence shown by the BOLD signals
in Panels D and E will be replicated using syn-
thetic signals with similar autocorrelation proper-
ties. To this end, we generate artificial time se-
ries with autocorrelation values identical to those
of the BOLD signals, using the MATLAB rou-
tine f_alpha_gaussian.mfrom [16] (see also source
codes at [17]). Panels B and C show that the be-
havior with respect to the threshold ν and γ for the
synthetic and empirical data are very similar.

The results show that the key to understanding
why the approach works lies in the correlation prop-
erties of the time series under consideration. In
synthesis, it is found that signals with long-range
correlations are particularly suitable for this type of
compression, where inflection points contain most
of the information. The results also apply to other
signals from any origin, as long as their autocorre-
lation features are similar.

IV. Further testing using synthetic
ground-truth data.

The results in the previous section emphasize the
relevance of the individual signal’s autocorrelation
as the main property related to the ability of a point
process to preserve information about the original
signal, and consequently, about functional connec-
tivity between signals. We can test this by ma-
nipulating the autocorrelation in any given system
for which the “ground-truth” crosscorrelations are
known. The data reported by Smith et al. [19] can
be used for our purpose.

The authors in [19] reviewed and compared the
available fMRI analysis methods ranging from sim-
ple measures of pair-wise linear correlations to so-
phisticated multivariate approaches. In the pro-
cess, they generated diverse and realistic simulated
fMRI data sets describing different underlying net-
works. These simulations were based on the dy-
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Figure 5: Simulated fMRI network from Ref. [19]. Panel A depicts the topology and Panel B the adjacency matrix
of the interactions of the nodes, where negative values (labeled red) correspond to self-interactions. Connections
are directed: a node in the upper diagonal of the matrix denotes a directed connection from a lower-numbered
node to a higher-numbered one. Panel C shows an example of the BOLD time series simulated on this network.

namic causal modelling (DCM) [20] fMRI forward
model (see [19] for full details). We used these sim-
ulated BOLD time series (downloaded from the au-
thors’ site [22]) to test the point process approach
in comparison with standard correlation methods.
First, for completeness, we briefly describe the
essence of the model used in these simulations.

The model: Smith et al. simulations used a neu-
ral network model coupled with Buxton’s nonlin-
ear balloon model [21] for the vascular dynamics.
Each neural network node has a binary external
input (square symbols in the top diagram of Fig.
5). The state of the inputs (i.e., active or inac-
tive) is given by a Poisson process which controls
the probability of switching states, and can be seen
as external signals or as noise at the neural level.
Subsequently, the neural signals propagate across
the network according to the DCM neural network
model, where node interactions are defined by the
A network matrix:

ż = σAz + Cu (1)

where z is the neural time series, ż is its rate of
change, u are the external inputs and C the weights

controlling how the external inputs feed into the
network (here just through the identity matrix).
The off-diagonal terms in A determine the network
connections between nodes (arrows in Fig. 5A),
and the diagonal elements are all set to -1 to model
within-node temporal decay; in this way, σ controls
both the within-node (neural) temporal inertia and
the temporal lag between nodes.

The time series of the activity for each node is
then fed to a nonlinear balloon model for vascu-
lar dynamics [21] output, which is a function of
the changing neural activity. The parameters were
adjusted by the authors in order to match BOLD
time series seen for typical data of brain resting
activity recorded with 3 Tesla fMRI technology.
Finally, various sources of variability were added
to account for realistic expectations. The BOLD
time series and the underlying ground-truth net-
work matrices are accessible on the authors’ site
[22]. In the following paragraphs, we will ex-
plore the ability of the point process to extract
the underlying network and to compare it with the
commonly-used correlation method.

Figure 5 shows the ground-truth network con-
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Figure 6: Panels A and B: Comparison of the partial
correlation matrices –one calculated with the original
BOLD data (Raw) and the other from its derived point
process (PP)– as a function of the threshold ν used to
define the point process. Panel A corresponds to the
root mean squared values of the differences, and panel
B to the correlation coefficients. Dots correspond to in-
dividual results while averages (filled circles) and error
bars correspond to the mean and standard deviation
of the 50 simulated BOLD records (time series length
T=200 samples) Panel C shows the Receiver Operating
Characteristic curve obtained for both methods in de-
tecting the presence of links (ν = 0.7 and σ = 2.2) com-
puted for two time series of maximum length (T. Max.
indicated in the legend). Panel D corresponds to the
area under the ROC curve, computed for both meth-
ods as a function of the increasing maximum length, T.
Max., of the time series considered.

sidered here (file sim4.mat downloaded from the
site [22]). Panels A and B illustrate the topology
and the adjacency matrix of the network (A in Eq.
1). It comprises 10 regular modules interconnected
by a few links, a typical small-word graph; a to-
tal of 50 nodes interconnected by 61 positive off-
diagonal interactions (40 of which correspond to
nearest neighbors), as well as 50 negative (diago-
nal) self-interactions. Panel Cshows typical traces
of the computed BOLD time series recorded at the
50 nodes, simulating data from a fMRI typical ses-
sion. The data set contains 50 stochastic realiza-
tions representing simulated fMRI records of differ-
ent human subjects.

Extracting the correlation graph: To benchmark
the relative merits of the point process approach,
we first extracted the point process from the BOLD

time series, and then computed the covariance ma-
trices for both the point process and the raw BOLD
dataset. Following this, the partial correlation
from both matrices was calculated (as in [19]), and
their differences compared for various levels of the
threshold ν used to define the point process. As
seen in Figs. 6A and 6B, there was an optimum
threshold (for this dataset ∼ ν = 0.7 ) at which the
correlation matrices became more similar.

We then proceeded to check how well the method
performed in predicting the underlying connectiv-
ity graph from the time series. Specifically, we
checked how well the correlation matrices from
both the point process and the raw BOLD dataset
described the off-diagonal elements depicted in Fig.
5B, i.e., the synthetic ground-truth network. We
used the receiver operating characteristic curve
(ROC) [23], which benchmarks specificity and sen-
sitivity as a function of a given parameter. To de-
termine whether a connection is predicted or not
between two nodes, we chose a threshold of 2 σ (cor-
responding to P = 95%) at the (i, j) partial correla-
tion matrices entry. In general, to obtain the ROC
curve a given range of relevant parameters must
be explored while the true/false positive/negative
predictions are counted. Here, for convenience, we
chose to explore a range of time series lengths from
relatively very short (set to 20 samples here) up to
a variable maximum length, T.Max. For the exam-
ples presented, the values of T.Max. ranged from
400 to 2000 samples.

Figure 6C illustrates the results, where the fam-
ily of curves (triangles for raw data and circles for
the point process) corresponds to time series of var-
ious maximum lengths (T.Max.). As expected, the
shortest T.Max (400 samples) gave the lowest con-
fident results, while the longest T.Max. (2000 sam-
ples) resulted in a very good estimation of the true
network connections. The area under the curve,
plotted in Fig. 6D, is a good estimation of the rel-
ative goodness of the prediction, where a value of 1
corresponds to a perfect prediction and a value of
0.5 is equivalent to chance. Note that the main
motivation for these numerical simulations is to
demonstrate that there is close similarity between
the PP and Raw ROC curves in Fig. 6D. This sim-
ilarity is indicative of the good performance of the
point process approach compared with the use of
the raw time series.
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V. Discussion and conclusion

In this note, we revisited the heuristic point pro-
cess approach originally introduced by Tagliazuc-
chi et al. [1–3] to represent brain spatiotemporal
dynamics in terms of the relatively high-amplitude
inflection points of the BOLD signal. At the same
time Caballero and colleagues [5–7] independently
reported similar results, but these were based on
de-convolution techniques. Later some extensions
of the approach were presented by several authors
[8–11].

Why it works: The present results show that the
PP approach works due to a rather trivial fact:
in any case of rather strongly autocorrelated sig-
nals, the most informative points are the inflec-
tion points; the remaining samples are more or less
interpolated by straight lines (see Fig.4A) which
can in principle, and for certain applications, be ig-
nored. Thus, in general, it is expected that time se-
ries that exhibit slowly decaying temporal correla-
tions will be particularly suitable for this type of
approach.

Relevance of the current results for functional
connectivity of the brain: Since its introduction,
it has been suggested that the PP (or its variants)
contains dynamical information, in the sense that
it is potentially able to identify the timing and the
location of fluctuating epochs of high correlations
among brain regions. This identification has re-
cently acquired relevance in the context of what is
now dubbed “dynamical functional connectivity”,
a very active area of research in the neuro-imaging
community (see for instance the reviews by Keilholz
et al. [25] and Iraji et al. [27]. In line with this,
the recent report of Esfahlani et al. [26] emphasizes
the fact that few events of co-activation can esti-
mate the functional connectivity architecture of a
system, a finding which is in full agreement with
our arguments. Thus, it is very important to un-
derstand that behind all these reports there is a
basic reason why these few points contain most of
the information.

There is a lot of room for further investiga-
tion based on estimation of the correlation between
these relatively large-amplitude inflection points.
In particular, it seems a promising approach for
inspection of non-stationarities in fMRI BOLD
data, in certain pathologies that are known to ex-
hibit bursts of non-stationarity, such as in Parkin-

son Disease syndrome and Tourette Disease syn-
drome. Typical of both cases is the existence of
few epochs of coherent brain activity, which can be
blurred if only the average functional connectivity
is computed. Finally, it seems reasonable that the
approach can be applied beyond brain research, to
inspect similar problems in other fields.
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