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Unconditionally Stable Algorithm for Copolymer and
Copolymer-Solvent Systems
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In the time evolution simulation of a copolymer system towards its equilibrium configura-
tion, it is common to use the Otha-Kawasaki approach for free energy and time evolution
by means of a Cahn-Hilliard diffusion equation. The conventional numerical resolution
is to use the cell dynamics simulation method (CDS). Although this method gives an
adequate response, it is limited since it needs very small time steps to present both appro-
priate resolution and stability. Unconditionally stable methods have recently been used in
gradient systems that provide adequate resolution and stability with a greater time step in
solving Cahn-Hilliard equations. In this paper we develop and implement unconditionally
stable algorithms for copolymer-solvent systems and for resolution of the time evolution
of block copolymer systems under the Otha-Kawasaki functional.

I. Introduction

The self-assembling ability of copolymers on a
nanometric scale has aroused great interest in the
development of potential applications [1]. Bulk
morphologies of diblock copolymers have been ex-
tensively studied both experimentally and theoret-
ically [2–4]. Depending on the composition of the
blocks that comprise it, and the χN parameter,
where χ is the Flory-Huggins parameter and N is
the polymerization rate, the bulk structures corre-
spond to lamellae, gyroids, cylinder hexagonal ar-
rangements and BCC structures of spheres [5]. Re-
cent research has shown that confinement is a pow-
erful tool for breaking the symmetry of a structure
and obtaining new shapes, different from those ob-
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tained in bulk [6, 7]. New studies have shown that
2D and 3D confinement induces new morpholo-
gies; for instance, copolymers immersed in cylin-
drical or spherical nanopores. This is produced by
the combined effect of confinement and curvature
[8]. The new morphologies enhance new applica-
tions, such as the development of membranes in fuel
cells, membranes for virus filtration, photonic ma-
terials and drug dispensers, among others [9–12].
Taking into account, firstly, the experimental diffi-
culties of analyzing the effects of confinement and
curvature on morphology, and secondly, the suc-
cess of theoretical models, it is very important to
have efficient calculation tools to explore the com-
plex configurational map of confined copolymers.
Simulation of the formation processes of confined
copolymer structures involves a high computational
cost. Due to this, it is essential to have a highly
efficient algorithm to perform numerical simula-
tions. In copolymer systems modelled under the
Ginzburg-Landau theory, time evolution is carried
out through the Cahn-Hilliard equation [13]. The
traditional method for numerical simulation is the
cell dynamics simulation method (CDS) [14]. In
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this article, we will discuss the advantages and dis-
advantages of this method and compare it with a
new numerical scheme developed by Eyre [15] for
the study of gradient systems. We will also de-
velop the implementation of said numerical scheme
for solvent-copolymer and copolymer systems.

II. Cahn-Hilliard equation

The Cahn-Hilliard equation was developed in 1958
to model the phase separation process of a binary
mixture [16]. This approach has been extended
to many other branches of science as dissimilar as
polymer systems [17], population growth [18], im-
age processing [19], and structures formed at the
bottom of a river [20], among others. The Cahn-
Hilliard model is a minimalist approach that con-
tains the elements that are essential to description
of the dynamics and the equilibrium properties of
a wide variety of systems. The general scheme of
the Cahn-Hilliard equation is the following:

∂tφ = ∇2µ (1)

µ =
δF

δφ
(2)

Where µ represents the chemical potential and F
the free energy functional that describes the system
under study. Particularly for a binary system, the
expression of free energy is given by:

F [φ] =

∫
dx[

1

2
|∇φ|2 +

1

4
(φ2 − 1)2] (3)

Here, φ is the order parameter representing the lo-
cal density of the components. Phase separation
occurs during the cooling of the system, from a dis-
orderly, high-temperature state, to an ordered low-
temperature state consisting of two phases. The
dynamics are controlled by a specific length L,
which increases with a power law in time L(t) ∼
t(1/3) [20]. This Law of Growth implies an ex-
tremely slow speed at advanced times during phase

separation, with a speed v ∼ ∂L

∂t
∼ t(−2/3) in the

domains. There is no analytical solution of the
Cahn-Hilliard equation for all time, thus numer-
ical methods are required for resolution. A wide
variety of algorithms have been developed to solve

the Cahn-Hilliard equation numerically. An exten-
sive analysis of the different methods developed can
be found in the reference section [22]. The tradi-
tional method is the cell dynamics method (CDS),
whose advantages and disadvantages are discussed
in the next section.

III. CDS method

The standard method for numerical resolution of
the Cahn-Hilliard equation is the cell dynamics
simulation (CDS) method [23]. This method corre-
sponds to a Euler numerical scheme. The conver-
gence of the Euler algorithm strongly depends on
the time discretization employed in ∆t. Above a
certain value of ∆t, the system is numerically un-
stable, presenting ”chess-board” instabilities. Con-
sequently, the CDS algorithm is subject to the
∆tmax ∼ ∆x4 [23] restriction, where ∆x is the spa-
tial discretization. For ∆t � 1 values, the CDS
method provides good convergence, although it re-
quires excessive computational time. On the other
hand, in the case of Cahn-Hilliard n = 1/3, coars-
ening systems present evolution of their character-
istic length L(t) and shape L(t) ' tn. This growth
characteristic has a very slow domain growth speed
associated with long times. It would be ideal to
have a numerical scheme that provided good con-
vergence and allowed varyiation of the time steps,
adapting it to the coarsening process. As we saw
in the previous equation, the CDS method cannot
fulfil this requirement since ∆t is limited.

IV. Eyre algorithm

The algorithm developed by Eyre for gradient sys-
tems has the advantage of being unconditionally
stable for every ∆t [15]. The algorithm guarantees
stability if the free energy functional F is divided
into its contractive FC and expansive FE parts.
The contractive term is evaluated implicitly and the
expansive term, explicitly. The numerical scheme
for resolution of the Cahn-Hilliard equation is the
following:

φt+∆t −∆t∇2µCt+∆t = φt + ∆t∇2µEt (4)

Here, the C and E superscripts indicate division of
the free energy into contractive and expansive. The
stability condition is guaranteed if max({λE}) ≤
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1

2
min({λ}) [24] is fulfilled, where λEand λ are the

eigenvalues of the Hessian matrices of the expansive
part of the energy and of the total energy, respec-
tively. Implementation of the Eyre algorithm for a
specific system requires evaluation of the free en-
ergy that characterizes the system.

V. Eyre algorithm applications to
block-copolymer systems

In this section, we will develop the Eyre numerical
scheme for the Ginzburg-Landau free energy func-
tional of a diblock copolymer system. In a diblock
copolymer system the expression of free energy is
the following [25,26]:

F [φ] =

∫
dr[

1

2
(∇φ)2 +W (φ)] (5)

+
α

2

∫
dr

∫
dr′G(r, r′)(φ(r)− φ̄)(φ(r′)− φ̄)

Where φ represents average composition.
Green’s function G(r, r′) verifies the condition
−∇2G = δ(r − r′) and W (φ) represents the
double-well potential.

W (φ) = −τ
2
φ2 +

g

4
φ4 (6)

The mesoscopic order is the result of competition
between a short-range attractive interaction, corre-
sponding to the gradient term of the equation, and
a long-range repulsive interaction, corresponding to
the long-range term that is imposed to avoid phase
macroseparation, and to set the copolymer period-
icity. The characteristic wavelength is λ = ( 1

α )1/4.
After dividing the energy into its contractive and
expansive terms, in accordance with the division
proposed in the previous section, and evaluating
the expansive part explicitly and the contractive
part, implicitly, we obtain:

φt+∆t −∆t∇2[−(1− a1)τφt+∆t −∇2φt+∆t]

+ ∆tαφt+∆t

= φt + ∆t∇2[−a1φt + gφ3
t ] + α∆tφ̄ (7)

The stability condition for this system results in:

a1 ≥
1

τ
[
τ

2
+ 3g] (8)

Figure 1: Time evolution of the copolymer system.
Simulation data: 1024x1024 grid with spatial dis-
cretization ∆x = 0.5 and periodic boundary conditions.
For the copolymer, g = 1, α = 1, φ = 0.1 and τ = 2.1
was used. Time (a) t = 0, random initial condition,
(b) t = 50 (c) t = 100, (d) t = 500, (e) t = 1000, (f)
t = 5000. Note that the location and identification of
topological defects of the hexagonal patterns have been
included in the last two images.
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Figure 2: Size of the domains L vs. time t. The results
show a growth law L ∼ t0.33±0.01 in good agreement
with the previous results. The plotted values corre-
spond to an average over 10 simulations.

VI. CDS vs. Eyre comparison

The CDS algorithm registers good convergence in
the numerical resolution of the Cahn-Hilliard equa-
tion. However, its effectiveness is limited by requir-
ing an extremely small time step ∆t. In this sec-
tion, the CDS and Eyre algorithms for numerical
resolution of the Cahn-Hilliard equation for mod-
eled diblock copolymer systems are compared with
the Ginzburg-Landau free energy functional sys-
tem, according to the result obtained in the pre-
vious section. The time evolution of a 2D system
with a 1024x1024 grid with spatial discretization of
∆x = 0.5 periodic boundary conditions was sim-
ulated. A pseudo-spectral method was used for
spatial derivatives [27]. For the copolymer, g =
1, α = 1, φ = 0.1 and τ = 2.1 were used. The bulk
equilibrium structure corresponds to a BCC forma-
tion of spheres, while in 2D systems it corresponds
to an hexagonal arrangement, as can be seen in
Fig. 1, where the time evolution of the system is
illustrated, starting from a disordered state. The
value ∆t = 0.03 was assigned to the CDS method.
The evolution of the system and the growth of the
size of the domains was measured using standard
image processing techniques to identify the center
of each disk in the hexagonal pattern. A Delau-
nay triangulation [28] was then used to determine
the inter-bond orientation between near-neighbor
disks θ(r). Finally, the average domain size L(t)
was obtained through the orientational correlation

length1. The results are presented in Fig. 2 ob-
taining a growth law L ∼ t0.33±0.01 in good agree-
ment with the previous results. In order to compare
these methods, the difference between the numer-
ical solutions obtained by each algorithm for the
above-mentioned system was calculated. The solu-
tion of the CDS method was taken as a reference.
The energy of the system was calculated at each
time step. Remember that in gradient systems the
energy decreases as time progresses. The solutions
were compared to equal values of free energy, and
the E error associated with the Eyre method was
calculated by expressing [30]:

E =

√
< (φCDS − φEyre)2 >

< (φCDS − φ̄)2 >
(9)

by the Eyre method. The notation <> indicates
an average over all points of the spatial grid. The
results for different ∆t values of the Eyre algorithm
are presented in Fig. 3, where the error value for a
given ∆t corresponds to an average over 100 com-
parisons of the Eyre solution with regard to the so-
lution taken as a reference to equal energy values.
For a three percent bounded error, the Eyre algo-
rithm was 120 times faster than the CDS method.

Figure 3: Calculation of the error E associated with
the simulations performed for different ∆t time dis-
cretizations, compared with the CDS system used as
a reference according to equation 9. The plotted values
correspond to an average over 100 simulations.

1In our case, this correlation length ξ6 can be determined
by fitting the azimuthal averaged orientational correlation
function g6(r) = 〈exp[6i(θ(r)− θ(r′))]〉 through a single ex-
ponential function g6(r)∼exp(−r/ξ6). See for example [29].

120001-4



Papers in Physics, vol. 12, art. 120001 (2020) / Aldo D. Pezzutti et al.

VII. Free energy of a copolymer-
solvent system

We can express the free energy of a copolymer-
solvent ternary system based on the order param-
eters η and φ, where φ represents the composi-
tion of the copolymer mixture, and η, the sol-
vent [31, 32]. The energy is composed of a short-
range term Fs[φ, η] and a long-range term Fl[φ] The
short-range term is the following:

Fs[φ, η] =

∫
dr[fη(η) + fφ(φ) +W (φ, η)

+
D1

2
|∇η|2 +

D2

2
|∇φ|2] (10)

Where D1 and D2 are phenomenological param-
eters related to the interface energy. The expres-
sions fη(η), fφ(φ) refer to double-well potentials,
explicitly:

fη(η) = −1

2
c1η

2 +
u1

4
η4 (11)

fφ(φ) = −1

2
c2φ

2 +
u2

4
φ4 (12)

Where ci and ui are phenomenological constants.
The expression W (φ, η) indicates the interaction
potential between the two order parameters. It is
given by:

W (φ, η) = b1φη −
b2
2
ηφ2 − b3

2
η2φ+

b4
2
η2φ2 (13)

The long-range term is the following:

Fl[φ] =
α

2

∫
dr

∫
dr′G(r, r′)[(φ(r)− φ̄)(φ(r′)− φ̄)]

(14)
The expression above is related to the φ parameter
that represents the copolymer. The bi parameters
of the interaction potential characterize the inter-
actions between block copolymers and the solvent.
The evolution of the order parameters φ and η rep-
resents the evolution of the copolymer and the sol-
vent, respectively. Time evolution results in a set
of coupled differential equations for conserved order
parameters.

∂η

∂t
= ∇2(

δF

δη
) (15)

∂φ

∂t
= ∇2(

δF

δφ
) (16)

Where F = Fs + Fl is the full energy.

VIII. Eyre algorithm for the Cahn-
Hilliard equation

The Eyre algorithm previously developed for a
copolymer system can be adapted to solve the
Cahn-Hilliard equation set that models the time
evolution of the copolymer and solvent equations
15 and 16. The expression of the algorithm is the
following:

φt+∆t −∆t∇2(−(1− a1)c2φt+∆t −D2∇2φt+∆t)

+ ∆tαφt+∆t

= φt + ∆t∇2(−a1c2φt + u2φ
3
t

+ b1ηt − b2ηtφt −
b3
2
η2
t + b4η

2
t φt) + α∆tφ̄

(17)

ηt+∆t −∆t∇2(−(1− a2)c1ηt+∆t −D1∇2φt+∆t)

= ηt + ∆t∇2(−a2c1ηt + u1η
3
t

+ b1φt −
b2
2
φ2
t − b3ηtφt + b4ηtφ

2
t ) (18)

With the following stability conditions:

a1 ≥
1

c2
[
c2
2

+
3

2
b2 + 3u2] (19)

a2 ≥
1

c1
[
c1
2

+
3

2
b3 + 3u1] (20)

IX. Numerical simulations

In order to evaluate the numerical resolution ob-
tained by the Eyre method, the time evolution of a
2D copolymer-solvent system was simulated. The
system was simulated with a 512x512 grid with
∆x = 0.5,∆t = 1.5 and periodic boundary condi-
tions for both order parameters. A pseudo-spectral
method was used for spatial derivatives [27]. The
initial conditions correspond to random fluctua-
tions in both order parameters. For the copolymer,
c2 = 0.1, u2 = 1, D2 = 1, α = 1, φ = 0 was used. For
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Figure 4: Time evolution of the copolymer-solvent sys-
tem. The figures show the order parameter of copoly-
mer φ on the left and the order parameter of solvent η
on the right. Simulation data: system with a 512x512
grid with ∆x = 0.5,∆t = 1.5 and periodic boundary
conditions for both order parameters. c2 = 0.1, u2 =
1, D2 = 1, α = 1, φ = 0 was used for the copolymer.
For this set of parameters the structure corresponds to
a lamellae structure. c1 = 0.3, u1 = 1, D1 = 0.5 was
used for the solvent. The interaction parameters were
b1 = 0.07, b2 = 0.3, b3 = 0, b4 = 0.1. Times: (a)t = 0,
(b)t = 10, (c)t = 1000, (d)t = 10000.

Figure 5: Time evolution of the copolymer-solvent sys-
tem. The figures show the order parameter of copoly-
mer φ on the left and the order parameter of solvent η
on the right. Simulation data: system with a 512x512
grid with ∆x = 0.5,∆t = 1.5 and periodic edge con-
ditions for both order parameters. c2 = 0.1, u2 =
1, D2 = 1, α = 1, φ = 0 was used for the copolymer.
For this set of parameters the structure corresponds to
a lamellae structure. c1 = 0.3, u1 = 1, D1 = 0.5 was
used for the solvent. The interaction parameters were
b1 = 0.03, b2 = 0.3, b3 = 0, b4 = 0.1. Times: (a)t = 0,
(b)t = 10, (c)t = 1000, (d)t = 10000.
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Figure 6: Time evolution of copolymer nano-drops on
a rigid substrate. The composition of the copolymer
is shown in the x, z plane. Simulation data: system
with a 512x512x256 grid with ∆x = 0.3,∆t = 1.5
and periodic boundary conditions in the x and y di-
rections and no flow in the z direction. c2 = 0.1, u2 =
1, D2 = 1, α = 1, φ = 0 was used for the copolymer.
For this set of parameters the structure corresponds to
a lamellae structure. c1 = 0.3, u1 = 1, D1 = 0.5 was
used for the solvent. The interaction parameters were
b1 = 0.03, b2 = 0.3, b3 = 0, b4 = 0.1. Times: (a)t = 0,
(b)t = 1000, (c)t = 10000, (d)t = 100000.

this set of parameters, the structure corresponds to
a lamellae structure. For the solvent, c1 = 0.3, u1 =
1, D1 = 0.5 was used. The interaction parameters
were b1 = 0.07, b2 = 0.3, b3 = 0, b4 = 0.1. Fig. 4
illustrates the time evolution of the copolymer-
solvent system phase separation. The b1 param-
eter determines the preference or affinity of the sol-
vent for one of the copolymer blocks. For the value
b1 = 0.07, there is a strong affinity with one of the
blocks, which results in the formation of copoly-
mer micelles. It should be noted that in most parts

of macrodomains, the lamellar domains tend to be
parallel to the macrophase interfaces and the do-
mains are surrounded by a thin layer of one block.

The decrease in the b1 value to a b1 = 0.03
value is illustrated in Fig. 5. A lower b1 value
results in similar affinity between the copolymer
blocks and the solvent. As seen in Fig. 5, the in-
terface of the copolymer domains is uniformly com-
posed by both blocks. For this value the stripe do-
mains emerge perpendicularly to the macrophase
interfaces. Thus a clear morphological transition is
brought about by changing the interaction parame-
ter b1. Parameter b1 allows the interaction between
the solvent and the copolymer blocks to be mod-
eled. The morphological change occurs at about
b1 = 0.04. This behavior coincides qualitatively

Figure 7: (a) Nano-droplet structures obtained for a
bulk phase copolymer of lamellae. (b)AFM image.
Nano-droplet of copolymer in lamellae phase obtained
by the dewetting process. The image shows the step-
wise shape of the droplet induced by competition be-
tween the surface tension on the liquid surface and the
lamellae structure, forming the copolymer droplet. The
image was extracted from the work of Croll et al. [33].
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with the experimental results [32]. To illustrate this
point we simulate the formation of a nano-drop on
a rigid substrate. To simulate the temporal evo-
lution of a copolymer droplet deposited on a rigid
substrate, the air copolymer system was modeled
as a ternary system (solvent copolymer), where the
air was treated as a bad solvent. The system was
simulated with a 512x512x256 (x, y, z) grid with
∆x = ∆y = ∆z = 0.3 and ∆t = 1.5. Periodic
boundary conditions in the x and y directions and
no flux in the z direction were used. The Eyre al-
gorithm developed in the previous section was used
for time evolution, and spatial derivatives were re-
solved using a pseudo-spectral method. Starting
from a disordered state, the time evolution is illus-
trated in Fig. 6. The final equilibrium structure is
illustrated in Fig. 7. Experimental work in the liter-
ature shows a similar formation of structures within
the nano-droplets. Fig. 7, insert b, shows the image
of a nano-droplet obtained by the dewetting process
of a diblock polystyrene-polymethyl methacrylate
(PS-PMMA) copolymer in the lamellae phase. De-
tails can be found in the work of Croll et al.[33].
The images show good qualitative agreement with
the nano-drop obtained by numerical simulation.

X. Conclusion

In summary, the numerical scheme developed by
Eyre for unconditionally stable gradient systems
was developed and implemented in the simulation
of block copolymer systems. Numerical evaluations
allow estimation of a higher resolution speed of up
to 100 times the traditional method used, called
CDS. Subsequently, the development for the simu-
lation of a solvent-copolymer system was extended.
In this case, examples of application and potential
use were presented in the dynamics resolution of
micelle formation and free interfaces, among oth-
ers. These will be evaluated in later work.
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