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Vortex dynamics under pulsatile flow in axisymmetric constricted tubes
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Improved understanding of how vortices develop and propagate under pulsatile flow can
shed important light on the mixing and transport processes occurring in such systems, in-
cluding the transition to turbulent regime. For example, the characterization of pulsatile
flows in obstructed artery models serves to encourage research into flow-induced phenom-
ena associated with changes in morphology, blood viscosity, wall elasticity and flow rate.
In this work, an axisymmetric rigid model was used to study the behaviour of the flow
pattern with varying degrees of constriction (d0) and mean Reynolds (R̄e) and Womersley
numbers (α). Velocity fields were obtained experimentally using Digital Particle Image
Velocimetry, and generated numerically. For the acquisition of data, R̄e was varied from
385 to 2044, d0 was 1.0 cm and 1.6 cm, and α was varied from 17 to 33 in the experi-
ments and from 24 to 50 in the numerical simulations. Results for the Reynolds numbers
considered showed that the flow pattern consisted of two main structures: a central jet
around the tube axis and a recirculation zone adjacent to the inner wall of the tube, where
vortices shed. Using the vorticity fields, the trajectory of vortices was tracked and their
displacement over their lifetime calculated. The analysis led to a scaling law equation for
maximum vortex displacement as a function of a dimensionless variable dependent on the
system parameters Re and α.

I. Introduction

Research on the dynamics of pulsatile flows through
constricted regions has multiple applications in
biomedical engineering and medicine. Cardiovascu-
lar diseases are the primary cause of death world-
wide (accounting for 31% of total deaths in 2012)
[1]. More than half of these deaths could have
been avoided by prevention and early diagnosis.
Atherosclerosis is characterized by the accumula-
tion of fat, cholesterol and other substances in the
intima layer, creating plaques which obstruct the
arterial lumen. Atherosclerotic plaque fissuring
and/or breaking are the major causes of cardiovas-
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cular stroke and myocardial infarct. Several fac-
tors leading to plaque complications have been re-
ported: sudden increase in luminal pressure [2], tur-
bulent fluctuations [3], hemodynamic shear stress
[4], vasa vasorum rupture [5], material fatigue [6]
and stress concentration within a plaque [7]. As
most of these factors are flow dependent, under-
standing how a pulsatile flow behaves through a
narrowed region can provide important insights for
the development of reliable diagnostic tools.

Flow alterations due to arterial obstruction (i.e.
stenosis) and aneurysms have been reported in the
literature [8–11]. Simplified models of stenosed ar-
teries have used constricted rigid tubes [12–15]. At
moderate Reynolds numbers, the altered flow splits
at the downstream edge of the constriction into a
high-velocity jet along the centreline and a vortex
shedding zone separating from the inner surface
of the tube wall (recirculation flow). Increasing
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Reynolds numbers lead to a transition pattern and
ultimately, turbulence.

Several experimental studies have been reported.
Stettler and Hussain [16] studied the transition to
turbulence of a pulsatile flow in a rigid tube us-
ing one-point anemometry. However, one-point
anemometry fails to account for different flow struc-
tures which may play an important role at the onset
of turbulence. Peacock [17] studied the transition
to turbulence in a rigid tube using two-dimensional
particle image velocimetry (PIV). Chua et al [18]
implemented a three-dimensional PIV technique to
obtain the volumetric velocity field of a steady flow.
The work of Ahmed and Giddens [19,20] studied
the transition to turbulence in a constricted rigid
tube with varying degrees of constriction using two-
component laser Doppler anemometry. For con-
striction degrees up to 50% of the lumen, the au-
thors found no disturbances at Reynolds numbers
below 1000. This study was not focused on describ-
ing vortex dynamics; however, the authors reported
that turbulence, when observed, was preceded by
vortex shedding.

Several authors carried out numerical studies.
Long et al. [15] compared the flow patterns pro-
duced by an axisymmetric and a non-axisymmetric
geometry, finding that flow instabilities through
an axisymmetric geometry was more sensitive to
changes in the degree of constriction. The work
of Isler et al. [21] in a constricted channel found
the instabilities that break the symmetry of the
flow. Mittal et al. [22] and Sherwin and Black-
burn [23] studied the transition to turbulence over
a wide range of Reynolds numbers. Mittal et al.
used a planar channel with a one-sided semicircu-
lar constriction. They found that downstream of
the constriction the flow was composed of two shear
layers, one originating at the downstream edge of
the constriction and the other separating from the
opposite wall. For Reynolds numbers above 1000,
the authors reported transition to turbulence due
to vortex shedding. Moreover, they found through
spectral analysis that the characteristic shear layer
frequency is associated with the frequency of vortex
formation. Sherwin and Blackburn [23] studied the
transition to turbulence using a three-dimensional
axisymmetric geometry with a sinusoidal constric-
tion. Based on the results of linear stability analy-
sis, the authors reported the occurrence of Kelvin-
Helmholtz instability. This reaffirms that instabil-

ities involving vortex shedding take place in the
transition to turbulence.

Finally, several studies compared experimental
and numerical results. Ling et al. [24] com-
pared numerical results with those obtained by
hot-wire measurements. As mentioned above, one-
dimensional hot-wire measurements cannot be used
to identify flow structures. Griffith et al. [25], using
a rigid tube with a slightly narrowed section resem-
bling stenosis, compared numerical results with ex-
perimental data. Using stability analysis by means
of Floquet exponents, they demonstrated that the
experimental flow was less stable than that of the
simulated model. For low Reynolds numbers (50
− 700), the authors found that a ring of vor-
tices formed immediately downstream of the steno-
sis and that its propagation velocity changed with
the degree of stenosis. The work of Usmani and
Muralidhar [26] compareed flow patterns in rigid
and compliant asymmetric constricted tubes for a
Reynolds range between 300 and 800 and Womers-
ley between 6 and 8. The authors reported that the
downstream flow was characterized by a high veloc-
ity jet and a vortex whose evolution was described
qualitatively. The aforementioned studies highlight
the significance of studying vortex dynamics, since
vortex development precedes turbulence, and ulti-
mately, contributes to the risk of a cardiovascular
stroke.

The aim of this work is to characterize vortex
dynamics under pulsatile flow in an axisymmetric
constricted rigid tube. The study was carried out
both experimentally and numerically for different
constriction degrees and with mean Reynolds num-
bers varying from 385 to 2044 and Womersley num-
bers from 17 to 50. The results show that the flow
pattern in these systems consists primarily of a cen-
tral jet and a vortex shedding layer adjacent to the
wall (recirculation flow), consistent with the litera-
ture. By tracking the vortex trajectory it was pos-
sible to determine the displacement of vortices over
their lifetime. Vortex kinematics was described as
a function of the system parameters in the form
of a dimensionless scaling law for maximum vortex
displacement.
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Figure 1: : (a) Schematic drawing of the experimental setup; (b) lengthwise view of a tube of diameter D =
2.6 ± 0.1 cm and an annular constriction of diameter d0; (c) experimental axial velocity at z = 0 and r = 0 for
R̄e = 1106, with d0 = 1.6 cm .

II. Materials and methods

i. Experimental setup

The experimental setup (Fig. 1 (a)) consisted of
a circulating loop and a Digital Particle Image
Velocimetry (DPIV) module capable of obtaining
videos and processing velocity fields. The circu-
lating loop consisted of a programmable pulsatile
pump (PP), a reservoir (R), a flow development
section (FDS) and a tube containing an annular
constriction (CT).

The tube with the annular constriction (CT) con-
sisted of a transparent acrylic rigid tube of length
L = 51.0±0.1 cm and inner diameter D = 2.6±0.1
cm. The annular constriction consisted of a hollow
cylinder 5± 1 mm in axial length, which was fitted
inside the rigid tube. Keeping the outer diameter of
the annular constriction fixed at 2.6 cm, i.e., equal
to the inner diameter of the rigid tube, its inner di-
ameter was changed to achieve different degrees of
constriction. Tests were carried out using annular
constrictions with inner diameters d0 = 1.6 ± 0.1
cm and d0 = 1.0 ± 0.1 cm, equivalent to degrees
of constriction relative to D of 39% and 61%, re-
spectively. A cross-sectional scheme of the constric-
tion geometry is shown in Fig. 1 (b), along with
the coordinate system used throughout the study.
The radial direction is represented by r and the ax-
ial direction by z, with r = 0 coinciding with the
tube axis and z=0 with the downstream edge of
the constriction. Within this axis representation,

the downstream region is defined by z >0 values
and the upstream region is defined by z < 0 val-
ues. Finally, this constricted tube (CT) was placed
inside a chamber filled with water, so that the re-
fraction index of the fluid inside the tube matched
that of the outside fluid.

The tube inlet was connected to the pulsatile
pump via a flow development section (FDS), and
its outlet was connected to the reservoir. The flow
development section was designed to ensure a fully
developed flow at the tube inlet and consisted of
two sections: first, a conical tube of 35 cm in length
whose inner diameter increased from 1 cm to 2.6 cm
to provide a smooth transition from the outlet of
the pump. Secondly, an acrylic rigid tube of in-
ner diameter D and length of 48D connected to
the constricted tube (CT). The reservoir (R) was
used to set the minimum pressure inside the tube,
which was set as equal to atmospheric pressure in
the experiments.

The system was filled with degassed water and
seeded with neutrally buoyant polyamide particles
(0.13 g/l concentration, 50 µm diameter, DAN-
TEC). The DPIV technique was used to obtain the
velocity field [27,28]. A 1 W Nd:YAG laser was used
to illuminate a 2 mm-thick section of the tube. Im-
ages were obtained at a frame rate of 180 Hz over a
period equivalent to 16 cycles, using a CMOS cam-
era (Pixelink, PL-B776F). The velocity field was
finally computed using OpenPIV open-source soft-
ware with 32 × 32 pixel2 windows and an overlap
of 8 pixels in both directions.
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The region of interest was defined as -0.5<
r/D <0.5, 0< z/D <1.5. Within this region no
turbulence was observed, as confirmed by spec-
tral analysis of the velocity fields. This observa-
tion is also consistent with previous observations
[17,24,29]. Due to the pulsatility and the absence
of turbulence, it was possible to consider each cycle
as an independent experiment, using the ensemble
average over all 16 cycles to obtain the final velocity
fields.

For each degree of constriction different experi-
ments were carried out, varying the flow velocity
at the tube inlet. The pulsation period and the
shape of the velocity as a function of t, in z = 0
and r = 0, shown in Fig.1 (c), remained unchanged
throughout the experiments. Pulsation period and
peak velocity can be related to the Womersley and
Reynolds numbers, respectively. The Womersley

number, α, is defined as α = D
2

√
2πf
ν , where f is

the pulsatile frequency and ν the kinematic viscos-
ity of water (ν = 1.0 × 10−6 m2/s).

The experiments were carried out for three dif-
ferent pulsatile periods, T : 0.96s, 2.39s and 3.58s,
corresponding to α values of 33.26, 21.10 and 17.22
respectively. The peak Reynolds number upstream
of the constriction is defined as Reu = Dvu/ν where
vu is the peak velocity measured at the centreline.
Four different values of Reu were used as inlet con-
dition upstream of the constriction (see table 1).
Similarly, the mean Reynolds at the downstream
edge of the constriction is defined as R̄e = d0v̄/ν,
where v̄ is the mean velocity over a whole period,
measured at (z, r) = (0, 0). Finally, experiments
are labeled through the R̄e values, since this rep-
resents a unique combination of Reu, d0 and α, as

α R̄e Reu Constriction d0 (cm)

33.26 654 820 39% 1.6
1002 820 61% 1.0
1106 1187 39% 1.6
1767 1187 61% 1.0
2044 1625 61% 1.0

21.10 385 505 39% 1.6
963 820 39% 1.6

17.22 585 820 39% 1.6

Table 1: Experimental degrees of constriction and R̄e
numbers.

Figure 2: Normalized displacement of piston yp for
Reu=505 (diamond green), Reu=820 (blue circles),
Reu=1187 (red squares), Reu=1625 (black plus sign).

summarized in table 1.

The pulsatile pump (PP in Fig. 1 (a)) generated
different flow conditions at the tube inlet, [30]. The
pumping module consisted of a step-by-step mo-
tor driving a piston inside a cylindrical chamber.
The control module contained the power supply
for the entire system and an electronic board, pro-
grammable from a remote PC by means of custom
software. The piston motion was programmed us-
ing the pump settings for pulsatile period, ejected
volume, pressure and cycle shape. The piston mo-
tion of the programmable pump is shown in Fig. 2
in normalized units of displacement and time. Fig-
ure 2 shows that the piston motion, and hence the
pulsatile waveform, are comparable among all Reu

values, meaning that the inlet conditions are equiv-
alent for all the experiments.

Finally, the condition of fully-developed flow at
the upstream region was verified. The entrance
length is usually estimated as L ≈ 0.05ReD. Ac-
cording to the work of Ku [31], the entrance length
of a pulsatile flow with α >10 corresponds to the
upstream mean Reynolds over a whole cycle, R̄eu,
giving L ≈ 0.05R̄euD. In our setup, the flow de-
velopment section measures 48D, R̄eu <1000 and
α >10 for all experiments, which makes it rea-
sonable to assume a fully-developed flow. Never-
theless, velocity profiles were studied for Reu val-
ues of 820, 1187 and 1625 in order to ensure de-
veloped flow condition. Profiles are taken from a
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Figure 3: Upstream velocity profiles for (a) Reu=820, (b) Reu=1187 and (c) Reu=1625. Profiles are located at
z1=-1.25D (blue circles), z2=-0.75D (red triangles) and z3=-0.25D (black plus sign).

1.5D length window upstream of the constriction,
at fixed locations z1 = −1.25D, z2 = −0.75D and
z3 = −0.25D. Velocity values are normalized by
the maximum velocity attained in a pulsatile cy-
cle. Figure 3 shows such profiles at t = 0.25T ,
t = 0.5T , t = 0.75T and t = T . Profiles show that
for each Reu, independently of the time, profiles
are equal for z1=-1.25D, z2=-0.75D and z3=-0.25D,
which demonstrates that the flow is developed.

ii. Numerical simulation

Three-dimensional numerical simulation using
COMSOL� software enabled comparison between
the experimental data and the study of param-
eter configurations not achieved experimentally.
This entailed solving time-dependent Navier-Stokes

equations under the incompressibility condition.

The inlet condition was defined as normal inflow
and taken from Reu=820 and Reu=1187 experi-
mental data in the upstream region, where the flow
is developed. In order to do this, a fourth-order
Fourier decomposition of the experimental flow rate
was carried out. The Fourier expansion yields
vz(t) = a0

2 +
∑4
n=1 (ancos (2πnft) + bnsin (2πnft))

with coefficients (×10−5, in cm/s) a0 =196.32,
a1 =61.94, a2 =8.22, a3 =13.79, a4 =3.87,
b1 =-27.66, b2 =-3.81, b3 =-5.13, b4 =-2.84 for
Reu=1187. Higher-order terms were not consid-
ered, as they do not contribute significantly to the
shape of velocity profiles. In order to improve nu-
merical stability, the velocity profile calculated by
decomposition was multiplied by a ramp function of
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time increasing steadily from 0 to 1 in 0.6 seconds.
Figure 4(a) shows the axial velocity at the centre-
line at the downstream edge of the constriction,
and presents good agreement with its experimen-
tal analogue shown in Fig. 1 (c). Outlet conditions
were set to p = 0, p being the difference between the
outlet pressure and atmospheric pressure, disabling
the normal flow and backflow suppression settings.
No-slip conditions were imposed on the inner sur-
face of the tube wall or the constriction. A scheme
of the geometry of the constricted tube used in the
numerical analysis is shown in Fig. 4(b). The sim-
ulations were initialized with the fluid at rest and
were run for 20 periods. The first 4 periods were
discarded in order to exclude transient effects. The
step size for the data output was selected to be the
same as for the experiments.

The mesh elements were tetrahedrons except
those close to the no-slip boundaries, which were
prismatic elements. This was done automatically
by COMSOL, based on the boundary requirements.
A COMSOL predefined physics-controlled mesh
was built, enabling settings that allowed the ele-
ment size to adapt to the physics at specific re-
gions. A cross-sectional view of the tube and the
mesh elements is shown in Fig. 4 (c).

Figure 6 compares numerical and experimental
velocity profiles in order to validate numerical re-
sults. Profiles are located upstream (z = −0.3D)
and downstream (z = 0.75D) for the two inlet con-
ditions Reu=820 and Reu=1187. The maximum
difference between numerical and experimental pro-
files was less than 9%.

A mesh convergence analysis was carried out for
three different meshes consisting of 180958, 351569
and 951899 elements at the highest Reynolds
(Reu=1187) attained in simulation. In Fig.5 the
axial velocity at r = 0, z = 0 vs. time (Fig.5(a))
and the velocity profiles at z = 0.5D (Fig.5(b)) are
compared for the three different meshes, showing
the results to be independent of the mesh chosen.
The relative deviation at the centreline, r = 0, is
less than 4.5%, although a slight deviation at t = T
near the wall is observed. However, this does not
affect vortex formation and propagation, which are
equally predicted by the three meshes. Finally, a
mesh of 351569 elements was chosen for this work
in a trade-off between spatial resolution and com-
putational time.

III. Results and discussion

i. Flow pattern

The velocity at the centreline, r = 0, at the down-
stream edge of the constriction, z = 0, as a func-
tion of time (see Fig. 1(c)) was used to establish
the time reference for all the experiments. The de-
celerating phase (diastolic phase) was defined as
0 < t < 0.5T and the accelerating phase (systolic
phase) as 0.5T < t < T .

Figures 7 and 8 show the temporal flow patterns
obtained from the experimental data correspond-
ing to R̄e=654, 1002, 1106, 1767 and 2044, while
Fig. 9 shows the patterns obtained via simulation.
Figures 7(a), 8(a) and 9(a) show the flow evolution
at times 0.25 T , 0.5 T , 0.6 T and 0.9 T . Some
features were common to all the experiments and
numerical results. During the accelerating phase
two main flow structures can be distinguished: a
central, high-velocity central jet and a recirculation
zone between the former and the inner surface of
the tube wall, with vortices developing in the latter.
In Figs. 7, 8 and 9, the central jet is shown in blue
and the recirculation zone in red. The central jet is
distinguished from the recirculation zone by having
vorticity values below the threshold of 30% of the
maximum of the absolute value of vorticity in each
timestep. The aim of this criterion is to separate
regions approximately rather than give their pre-
cise location. Within the recirculation zone, vor-
tices separated from the wall and travelled along
the tube.

Other features are dependent on the Reynolds
number. For instance, for R̄e = 654 (Fig. 7 (b))
the vortex had already developed at the first half
of the decelerating phase and propagated until the
beginning of the accelerating phase, as suggested
by the dashed lines. At this stage, the thickness
of the recirculation zone is approximately equal to
h. During the accelerating phase, the thickness of
the recirculation zone began to decrease as that of
the central jet increased. Toward the end of this
phase, the central jet was thicker and the previous
vortex had almost entirely dissipated, while a new
vortex had begun to develop in the vicinity of the
constriction (z/D < 0.2).

For R̄e = 1106(Fig. 7 (c)), the flow presented
the same characteristics as for R̄e = 654. Here,
the vortex travelled faster during the entire cycle
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Figure 4: (a) Axial inlet velocity at r = 0; corresponds to Reu = 1187; (b) axial velocity at r = 0 and z
= 0; corresponds to R̄e = 1106; (c) schematic drawing of the flow development section and the axisymmetric
constricted tube; (d) cross sectional view of the mesh.

and the recirculation zone was 27% thicker. This
is ascribed to the increment in the peak velocity of
the central jet and the consequent increase in shear
stress, leading to enlargement of the recirculation
zone and an increase in radial velocity.

At R̄e = 654 and R̄e = 1106 two vortices were ob-
served in the region of interest over one pulsatile pe-
riod (Figs. 7(b) and (c)). In the case of R̄e = 1106
(Fig. 8 (b)), only one vortex was observed over one
period. This difference arose because the vortex
propagates at lower velocities for lower Reynolds
values, then it is expected that two vortices will
be observed in the region of interest, which were
shed in consecutive pulsatile periods. For R̄e =
1106 at the beginning of the accelerating phase,
the central jet decreased in thickness and the re-
circulation zone became enlarged to occupy almost
the entire tube section at z/D ≥ 1. This can be
attributed to a marked deceleration of the central
jet at the start of the accelerating phase. Due to
mass conservation, the radial velocity is expected
to increase, leading to enlargement of the recircula-
tion zone. This is also consistent with that reported
previously by Sherwin [23].

At R̄e = 1767 (Fig. 8 (c)), the vortex developed
and propagated faster than in the previous cases,
and a secondary vortex was observed. In the de-
celerating phase, the vortex reached its maximum
size and almost escaped from the region of interest.
When the velocity of the central jet at the con-

striction was near its minimum, the vortex left the
region of interest and the rest of the flow became
disordered. In the accelerating phase, the vortex
developed earlier than at lower Reynolds numbers.

Comparison of Figs. 7 and 8 illustrates how the
flow pattern changed with the degree of constric-
tion. While in Fig. 7 the vortex travelled without
a substantial change in size, Fig. 8 (b) shows a
sharp change in vortex size, measured radially, and
Fig. 8 (c) shows that the vortex had almost en-
tirely dissipated at t = 0.5T . Moreover, due to the
reduction in d0 (Fig. 8) the velocity of the central
jet was higher, and the recirculation zone became
enlarged with increasing z, which explains the in-
crease in vortex size. This is consistent with that
reported by Sherwin et al. [23] and Usmani [26].

Enlargement of the recirculation zone was
present throughout the experiments. This could
be explained in terms of circulation, as pointed out
in the work of Gharib et al. [32] which studies the
flow led by a moving piston into an unbounded do-
main. This work determined that a vortex forms up
to a limited amount of circulation before shedding
from the layer where it was created. The main dif-
ference from our work consists in the confinement
that the walls impose on the vortex. The result is
that a vortex which sheds with a certain amount
of circulation enlarges in the axial direction. This
mechanism can also explain the generation of a sec-
ondary vortex. Specifically, the vortex sheds after
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Figure 5: Behavior comparison for three meshes:
180958 elements (Mesh 1), 351569 elements (Mesh 2)
and 951899 elements (Mesh 3). (a) Axial velocity at
r = 0, z = 0 vs time and (b) Velocity profiles in down-
stream location z = 0.5D at 0.25T , 0.5T , 0.75T and
T .

a precise amount of circulation is reached. Then
any excess of circulation generated goes to a trail
of vorticity behind the vortex, eventually identified
as a secondary vortex.

Finally, experimental and numerical results were
compared in order to validate the simulation. Fig-
ure 9 shows the evolution of the simulated flow at
R̄e = 654 and R̄e = 1106. Comparison of Fig. 9
with Fig. 7 confirms similar behaviour for the ex-
perimental and simulated flows. The main struc-
tures, i.e. the central high-velocity jet and recircu-
lation zone, were satisfactorily reproduced by nu-
merical simulation.

ii. Vortex propagation

Vortex propagation was studied by measuring vor-
tex displacement as a function of time along one
pulsatile period. To this end, the study region was
constrained to 0.3 < r/D < 0.5 in order to isolate
the vortex fraction forming in the superior wall of
the tube. In this region vorticity values of the vor-
tex are positive. For each time frame, the vorticity
field was used to extract the vortex position. Then,
in each frame, all vorticity values below a threshold
of 30% of the maximum vorticity value were disre-
garded in order to obtain the filtered vorticity field
ζ̄(r, z). The vortex position was then calculated
as (r̄, z̄) =

∑
(r, z)ζ̄(r, z). The vortex propagation

was along z and is specified in figs. 7, 8 and 9 by
a black dashed line. This aforementioned method
enables us to track the vortex and finally to mea-
sure the vortex maximum displacement, which will
be discussed in the next subsections.

iii. Numerical results for varying Womers-
ley number

Maximum vortex displacement was defined as
z∗/D. Position z∗ is where vorticity becomes
lower than 30% of the maximum vorticity and is
measured from z0, the position where the vortex
formed. Position z0 was defined as the location of
the vortex centre before it sheds. The dependence
of the vortex displacement over its lifetime on α, or
f , was studied numerically for fixed values of R̄e =
654 and R̄e = 1106, and pulsatile frequency values
of 0.5 f , 0.75 f , f , 1.5 f and 2 f , where f is the
pulsatile frequency tested experimentally.

Figure 10 clearly illustrates the dependence of
the maximum vortex displacement on α. For a
fixed value of R̄e , as α increased, i.e., f increased,
the flow behaviour tended to replicate within a
smaller region of the tube over a shorter time
span. With increasing α, vortices tended to have a
shorter lifespan and their maximum displacement
was therefore smaller. In other words, z∗/D de-
creased with increasing pulsatile frequency.

iv. Scaling law

A full description of vortex displacement has been
given in previous sections. Specifically, the maxi-
mum displacement of the vortex was studied; that
is, the distance it travels before it vanishes. From
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Figure 6: Experimental (blue circles) and numerical (red solid line) velocity profiles at upstream location z =
−0.3D for (a) Reu=820, (b) Reu=1187 and at downstream location z = 0.75D for (c) Reu=820, (d) Reu=1187

our results we propose a scaling law which sum-
marizes the behavior of z∗/D as a function of the
parameters involved, R̄e and α.

The physical dimensions for the relevant vari-
ables are ν, D, f and v̄. Based on the Vaschy-
Buckingham theorem, it is possible to describe
z∗/D as a function of two independent dimension-
less numbers, R̄e and α, which involve the rele-
vant variables mentioned. Maximum displacement
z∗/D was found to be proportional to flow velocity
v̄ (i.e. R̄e ), and inversely proportional to pulsation
frequency f (i.e. α2), suggesting that

z∗/D = K
R̄e

α2
(1)

where K is the proportionality constant.
Figure 11 shows z∗/D as a function of R̄e/α2 ,

showing that both the experimental data and the
numerical results are a good fit to Eq. 1. The fitted
slope was K = 1.15 ± 0.19 at a confidence level
of 95%. This result highlights the dependence of

z∗/D on R̄e and 1/α2, as could be inferred from
the data of Fig. 10.

The work of Gharib et al. [32] shows that the
developing vortex reaches a threshold of circula-
tion before it sheds. If an excess of circulation
is generated, this could lead to the formation of
other structures such as secondary vortices. This
means that pulsatile frequency f coincides with the
shedding frequency of the primary vortex, the one
that was tracked. Hence, the parameter R̄e/α2

can be related to the Strouhal number through
R̄e/α2 = 2

π
d0
D

1
Sr . A discussion of the results in

terms of the Strouhal number clarifies the rela-
tion between the oscillatory component of the flow
and the stationary component of the flow. For
lower values of R̄e/α2, that is, Sr close to 1, sta-
tionary and oscillatory components are compara-
ble, which explains a vortex with low to null dis-
placement. The extreme case occurs when the flow
oscillates but no vortices are shed. For instance,
this could be attained for Reynolds numbers below
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Figure 7: (a) Axial velocity profile at z = 0 and r = 0 and time at which the velocity field was obtained
(red circles); (b) streamlines derived from experimental data for R̄e = 654, with d0 = 1.6 cm; (c) streamlines
derived from experimental data for R̄e = 1106, with d0 = 1.6 cm. In both cases, red streamlines represent the
recirculation zone and blue streamlines the central jet (colours available online only).

those used in this work. As R̄e/α2 increases, that is
for Sr . 10−1, vortices are shed and travel further
before vanishing as a consequence of the stationary
component of the flow being greater than the os-
cillatory component. Parameter R̄e/α2 also states
the kinematic nature of vortex displacement, and
by rewriting R̄e

α2 = 2d0v̄
πD2f we conclude that z∗/D

depends on kinematic variables and not on viscos-
ity.

Finally, this shows that Eq. 1 can be consid-
ered as a scaling law that describes the vortex dis-
placement over its lifetime for any combination of

the relevant parameters Re and α within the range
studied and the constriction shape used. Specifi-
cally for the dependence on constriction shape, pre-
liminary results with a Guassian-shaped constric-
tion were obtained numerically, giving a difference
below 20% for the maximun vortex displacement
for Reu=1187. Vortex dynamics depend on inlet
condition shape [23,33]. However, studies are not
conclusive regarding the dependence of the vortex
maximum displacement on the shape of the inlet
condition. Further research is being carried out on
this point.
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Figure 8: (a) Axial velocity profile at z = 0 and r = 0 and time at which the velocity field was obtained
(red circles); (b) streamlines derived from experimental data for R̄e = 1002, with d0 = 1.0 cm; (c) streamlines
derived from experimental data for R̄e = 1767, with d0 = 1.0 cm. In both cases, red streamlines represent the
recirculation zone and blue streamlines the central jet (colours available online only).

IV. Conclusions

In this work, a pulsatile flow in an axisymmetric
constricted geometry was studied experimentally
and results were compared with those obtained nu-
merically for the same values of R̄e and α. Af-
ter validation of the numerical results, simulations
were run over a range of α values that could not be
tested experimentally, in order to identify trends in
flow behaviour with varying α.

The flow structure was found to consist of a cen-

tral jet around the centreline and a recirculation
zone adjacent to the wall, with vortices shedding
in the latter. The analysis addressed how the vor-
tex trajectory and size changed with the system
parameters. Specifically, for a fixed value of α, vor-
tex size grew with decreasing d0, and vortex dis-
placement was larger for increasing R̄e values. The
dependence on α was such that as α increased, the
behavior of the flow was reproduced in a shorter
extension of the tube. The vortex trajectory was
tracked and its displacement over its lifetime deter-
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Figure 9: (a) Axial velocity profile at z = 0 and r = 0 and time at which the velocity field was obtained (red
circles); (b) streamlines derived from simulation results for R̄e = 654; (c) streamlines derived from simulation
results for R̄e = 1106. In both cases, red streamlines represent the central jet layer and blue streamlines represent
the central jet (colours available online only).

mined. Results showed that vortex displacement
over its lifetime decreased with increasing α. The
analysis led to a scaling law establishing linear de-
pendence of the vortex displacement on a dimen-
sionless parameter combining R̄e and α, namely
R̄e/α2 . Moreover, this parameter was found to be
proportional to the inverse of the Strouhal num-
ber. This directly relates the vortex behavior to
the ratio between the pulsatile component and the
stationary component of the flow.

As seen from the medical perspective on the issue
of stenosed arteries, these results provide insight
into vortex shedding and displacement in a simpli-
fied model of stenosed arteries. This becomes cru-
cial since vortex shedding precedes turbulence, and
turbulence is related to plaque complications which
may finally lead to cardiovascular stroke. The au-
thors encourage further research into the behaviour
of vortices over a wider range of parameters, includ-
ing different constriction shapes and sizes.
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Figure 10: Dependence of the dimensionless maximum
vortex displacement on α. Experimental results in blue
squares and numerical results in red circles (R̄e = 654)
and red triangles (R̄e = 1106).

Figure 11: Dimensionless maximum vortex displace-
ment, z∗/D, as a function of the dimensionless param-
eter R̄e/α2 for experimental data (blue squares) and
numerical data (red circles).
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