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Radial percolation reveals that Cancer Stem Cells are trapped in the
core of colonies

Lucas Barberis1*

Using geometrical arguments, it is shown that Cancer Stem Cells (CSCs) must be con-
fined inside solid tumors under natural conditions. Aided by an agent-based model and
percolation theory, the probability of a CSC being positioned at the border of a colony is
estimated. This probability is estimated as a function of the CSC self-renewal probability
ps; i.e., the chance that a CSC remains undifferentiated after mitosis. In the most common
situations ps is low, and most CSCs produce differentiated cells at a very low rate. The
results presented here show that CSCs form a small core in the center of a cancer cell
colony; they become quiescent due to the lack of space to proliferate, which stabilizes
their population size. This result provides a simple explanation for the CSC niche size,
dispensing with the need for quorum sensing or other proposed signaling mechanisms. It
also supports the hypothesis that metastases are likely to start at the very beginning of
tumor development.

I Introduction

Cancer Stem Cells (CSCs) are responsible for driv-
ing tumor growth due to their ability to make copies
of themselves (self-renewal) and differentiate into
cells with more specific functions [1]. Differentiated
Cancer Cells (DCCs) maintain a limited ability to
proliferate, but can only generate cells of their spe-
cific lineage [2].

Like the tissues from which they arise, solid
tumors are composed of a heterogeneous popula-
tion of cells; many properties of normal stem cells
are shared by at least a subset of cancer cells
[3, 4]. In many tissues, normal stem cells must be
able to migrate to different regions of an organ,
where they give rise to the specifically differenti-
ated cells required by the organism. These features
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are reminiscent of invasion and immortality, two
hallmark properties of cancer cells [5, 6]. Resis-
tance to chemo/radio therapies gives the CSCs a
high chance of survival and of forming new tumors,
even after treatment [7]. Hence, based on the con-
cept that destroying or incapacitating CSCs would
be an efficient method of cancer containment and
control, new therapeutic paradigms are the focus
of current research.

A tumorsphere assay is an experimental biolog-
ical model used for the study of CSC features. A
tumorsphere is a clonal aggregate of cancer cells
grown in vitro from a single cell. It has been shown
experimentally that DCCs can not generate a tu-
morsphere because they are unable to form com-
pact long-term aggregates. As a consequence, the
current experimental convention for the definition
of CSCs, from a functional point of view, is based
on the capacity of a single cell, the seed, to grow
a more or less spherical aggregate in a gel suspen-
sion. This is why CSCs are said to “drive” tumor
progression.
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In an experimental assay, where the time evolu-
tion of the number of cells in a tumorsphere is mea-
sured, it is possible to determine a proliferation rate
r consistent with the Population Doubling Time
(PDT) of the total population. Unfortunately, this
quantity cannot discriminate between the growth
rates of CSCs and their differentiated counterparts.
Furthermore, measuring the PDT of the CSCs is
experimentally very complex [8]. Understanding
r is crucial for mathematical modeling in a sys-
tem where the offspring might belong to a different
population than their parents. Indeed, CSC du-
plication could have three possible outcomes: stem
cell replication (self-renewal), asymmetric differen-
tiation and symmetric differentiation. To model
such a feature mathematically, we can assume that
the three outcomes will occur with probabilities ps,
pa and pd, respectively. From the point of view
of the populations, the last two possibilities corre-
spond to the birth of a new DCC, the parent cell
either keeping (in the asymmetric duplication) or
losing (in the symmetric case) its stemness. For
example, writing the corresponding population dy-
namics differential equations, Beńıtez et al. showed
that a CSC will give birth to another CSC at a rate
rps which is estimated by fitting their mathemati-
cal model to the experimental data [9,10]. Since the
probability of self-replication ps seems to be small
in homeostasis and in most common culture media,
then rps will also be small, leading to quiescence, a
main feature of CSCs. Nevertheless, CSCs can be
experimentally forced to abandon their quiescent
state by using specific growth factors that inhibit
differentiation [11,12] or by restricting oxygen con-
centration, as discussed below. In these situations,
ps is close to one and tumorspheres will contain a
high fraction of CSCs. Also, pa is usually small,
although its value can increase under abnormal sit-
uations such as injury or disease.

Metastasis, the invasion process by which cancer
cells leave a tumor to form a new colony at another
location, is an intriguing feature of cancer disease.
Because CSCs are the seeds of tumors, it is ac-
cepted that metastatic tumors must come from a
pre-existent primary tumor and might be located
near its surface in order to detach, migrate and fi-
nally invade another site in the organism.

The distribution of CSCs in a primary tumor is
key to the understanding of metastasis, cell prolifer-
ation and drug resistance. Curiously, according to

the three-concentric-layer model proposed by Per-
sano et al., CSCs seem to be located in the inner
core of glioblastomas. On the other hand, cells on
the periphery of the tumor show a more differen-
tiated phenotype that is highly sensitive to Temo-
zolomide, a drug for cancer treatment [13]. Inter-
estingly, these authors demonstrate that CSCs are
more proliferative under hypoxic conditions. Fur-
thermore, Li et al. report that hypoxia plays an
important role in the de-differentiation of cells [14].
These results indicate that a hypoxic environment
will increase the numbers of CSCs.

The aim of this work is to simulate colony growth
by means of an Agent-Based Model (ABM) that
mimics basic features of CSC proliferation, with
emphasis on its geometrical properties. Multi-
ple realizations allow us to estimate the fraction
of CSCs situated on the periphery of the colony,
showing that it is quite small for large, long-lived
colonies. We also use some elements of percolation
theory to help interpret and quantify the simulation
results. We then report a transition to percolation
which depends on the self-renewal probability, ps,
of the CSC population. Finally, we conclude that
that our results lead to a simple explanation for
CSC niche size, and support the hypothesis that
the metastatic process must start at the very be-
ginning of tumor development.

II Simulation of two-dimensional
colonies

Experimental monoclonal colonies start with a CSC
in a suitable culture medium. This cell and its
daughters duplicate at a more or less constant rate,
forming a colony with an approximately circular
shape. The reader interested in examples may re-
fer to [15–17] for further information. In this work
we use the same principle, describing the cells us-
ing circle-shaped mathematical objects and refining
rules for their duplication and movement. In later
studies we will requirecells not to be rigid spheres.
Each cell in the current simulations has a central
circular impenetrable region, the core, and around
the core there is an area, the corona, where overlap-
ping is allowed. In this way, cells are able to overlap
as far as the border of their coronas and reach the
border of the core of other, neighboring cells. The
figures presented in this work has a 95 % overlap
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(a) (b)

Figure 1: Two realizations of the simulation for ps = 0.5
after 15 days. (a) There are no CSCs at the periphery;
all of them, colored in pink, became quiescent. (b) The
active CSCs at the border are colored in red. Note that
some branches failed to percolate. DCCs are depicted
in cyan (quiescent) and blue (active). The seed is rep-
resented in yellow.

on the cell radius. However, we will show that the
results presented here do not depend on this param-
eter. Also, each cell belongs to a class that defines
its behavior: active CSCs, active DCCs, quiescent
CSCs and quiescent DCCs. As a simplification of
the model, we assume that the probability of asym-
metric duplication of CSCs is zero, pa = 0. In this
way ps is the only control parameter that allows
direct capture of the model’s main features.

We start the simulation by seeding an active CSC
and asking it to duplicate. Furthermore, at each
time step we ask all active cells to attempt to du-
plicate, according to the following rules. First a
new cell is created in a random position at the side
of an active cell. If there are no other cells in this
location it remains there, otherwise a new location
beside the active cell is randomly determined. After
500 attempts, if the new cell has still not found an
empty spot to occupy, it is destroyed and the active
cell changes to its respective quiescent class. Con-
versely, after successful duplication, if the active
cell is a CSC it self-renews with a probability ps,
which means that the new cell becomes an active
CSC, otherwise it changes to the active DCC class.
If the new, active cells belong to different classes,
there is a probability of 1/2 that the active CSC
will exchange positions with the new DCC. Natu-
rally, an active DCC can only create another active
DCC.

Once all the active cells have been asked to du-
plicate, independently of the success of the attempt

(a) ps = 0.2 (b) ps = 0.95

Figure 2: Two realizations of the simulation at low (a)
and high (b) self-replication rates after 15 days. In (a)
the CSCs are quickly surrounded by DCCs, becoming
quiescent (pink). In (b) the high number of CSCs allows
percolation to most of the colony perimeter. The seed
is colored in yellow.

we say that a one-day-long time step has been per-
formed. This implies, without loss of generality,
that r ' 1 day−1, a reasonable growth rate that
will aid our intuition. Further details on the struc-
ture of the simulation process are provided in the
Appendix, including a flow chart in Fig. 7. We
have also provided videos in the Supplementary In-
formation. In each video a representative value of
ps was set and ten realizations were recorded, illus-
trating how they were carried out.

Typical outcomes of the described process are
shown in Fig. 1 and video v1. In these examples we
set ps = 0.5 and started with a CSC seed depicted
in yellow. After running the simulation for a period
equivalent to two weeks (15 time steps), a relatively
long period for a biological experiment, we obtained
two possible outcomes: (a) a few quiescent CSCs
were trapped in the center of the colony or (b) there
were active CSCs at the border of the colony. In-
deed, we defined the border of the colony as the rim
formed by the set of active cells. To better track
the subpopulations present in the colony, the ac-
tive cells are colored in red for CSC and in blue for
DCC. Also, the quiescent cells are colored in pink
for CSC and cyan for DCC. Remember that the
yellow dot is not always at the center of the colony
because the seed may exchange its pposition with a
new DCC. In panel (b) we recognize a path, paved
by CSCs, that joins the center of the colony with its
border. Also, some frustrated branches appear in
this path of CSCs, which die in the quiescent core,
indicating great variability. This path resembles
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Figure 3: Time evolutions of quantities averaged over a thousand realizations for values of ps ∈ [0.2..1.0]. (a)
Number of CSCs at the border. (b) The total number of CSCs reaches a constant value that defines the niche.
(c) The probability of a CSC being at the border. (d) System size as a function of time.

cluster percolation in porous media, lattices or net-
works, which led to us to attempt to describe the
probability of finding a CSC at the border of the
colony by means of percolation theory.

To sharpen our intuition as to what percolation
means in this system, in Fig. 2 and videos v2 and
v3 we present two more examples with different
self-replication probabilities, ps. In panel (a) and
video v2, ps = 0.2 is so small that the CSCs are
quickly surrounded by DCCs, and become quies-
cent. This is the most common situation in a regu-
lar culture medium where the CSC count is low and
constant —over time. On the other hand, in panel
(b) and video v3, ps = 0.95 leads to a large CSC
population that invades almost the entire system.
The addition of stem cell maintenance factors such
as EGF or bFGF to the culture medium is an ex-
ample of this case. These limiting situations were

previously studied both experimentally [11,18] and
mathematically [9,10], focusing in the first case on
technical aspects of the assay, and in the second
case on recovery of the CSC fraction.

Curiously, in the examples shown in Figs. 1 and
2, the rim formed by active cells is similar to the one
reported in the classical multicelular spheroid work
of Freyer and Shuterland [19]. In Freyer’s work,
the inner portion of the spheroids was formed by
dead cells, attributed to a low concentration of oxy-
gen/nutrients supplied by means of diffusion. This
rim was also formed by active cells and was stud-
ied mathematically by several authors using diffu-
sion equations [20–22]. It is interesting that in
the present monoclonal case the geometry seems to
be sufficient to develop a rim, just two cells thick,
independently of any diffusion process.
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To study the percolation properties of the system
statistically, we carried out extensive simulations
of colony growth. Each data point reported is the
result of averaging over 1000 runs. The time evolu-
tion of colony growth was performed for 37 values
of ps ∈ [0.2, 1.0]. The results of these measure-
ments are summarized in Fig. 3. Panel (a) shows
the number of CSCs at the border, which increases
to a maximum given by the time when they are
overwhelmed by the DCC population. Beyond this
point, more and more CSCs become quiescent un-
til no more active CSCs remain. This phenomenon
disappears for ps barely lower than 1, when almost
all cells on the border are CSCs. In panel (b) the
time evolution of the total CSC population is de-
picted, showing that after a transient the CSC pop-
ulation stops growing and remains constant. This
fixed number of CSCs is usually called the CSC
niche and was mathematically studied in [9]. As
expected, the probability of a CSC being at the
border rises as ps is increased, as shown in panel
(c). The relationship between simulation time and
system size is shown in panel (d); due to its geomet-
rical nature it is independent of ps, the self-renewal
probability.

III Percolation theory

Percolation theory was used to estimate the prob-
ability of finding a CSC at the border of the
colony, looking for a purely geometrical feature of
its growth. In particular, we assumed that the cells
in the colony could be mapped onto the nodes of
a triangular network with the seed at its center.
Each cell is then connected with its nearest neigh-
bors, whose number, in two dimensions, is known
not to exceed six. As shown in Fig. 1(b), the CSCs
(quiescent and active) form paths that expand ra-
dially from the center to the edge of the colony.
By inspection, we note that these paths are formed
by the connected nodes that have had a CSC at
any moment during the culture. The path could
have some “holes” that arise because of the possi-
bility of exchanging a parent CSC with its daughter
DCC. The probability ps thus regulates the num-
ber of CSCs that occupy the nodes of the network.
Hence, there must be a threshold value pc of ps, be-
low which it is impossible to follow a path of nodes
starting at the seed and ending in a CSC at the

border of the tumor. This value, pc, is called the
critical value or percolation threshold and defines
a percolation phase transition[23]. Thus, when the
border is reached by CSCs, we say that such a path
percolates.

Formally, a percolating path is mathematically
defined as a set of connected nodes that expands in-
finitely over an infinite network for a large enough
value of ps [24]. In our model, each new node of
the percolation path is added either by the self-
renewal of a CSC, with probability ps, or by an
exchange between a CSC and a DCC, with proba-
bility 1

2×(1−ps), after a CSC gives birth to a DCC.
It is also important to note that several neighboring
nodes could already be occupied. Thus, it is useful
to define the average empty neighbor number z as
follows: Imagine that we perform a random walk
starting at the seed’s node along an infinite path
where it is forbidden to step back. At each step
there are z branches in the network, but there is
also a probability ps + 1−ps

2 that a node belongs to
the path, so on average only 1

2 (ps + 1)z will be ac-
cessible. To continue walking along the path, there
must be at least one empty node to walk along,
leading to the condition 1

2 (ps + 1)z ≥ 1. Therefore,
the critical probability for transition to percolation
is

pc =
2

z
− 1, (1)

which depends on the available neighbor number.
1 It is noteworthy that in Eq. (1), for z = 1 we ob-
tain pc = 1, the 1D critical occupation for a chain
of nodes. For 1 < z < 2 the critical occupation
quickly falls to zero. This means that for z ≥ 2 the
system will always percolate. On the other hand, if
the CSC never exchanges its position with a DCC,
we get pc = 1

z , which is again the 1D critical oc-
cupation and will asymptotically fall to zero as z
increases. Otherwise, if the CSC always moves, ps
diverges as expected for a cell that always remains
on the outer rim of the growing colony. There is
no evidence that a CSC will stay either in the core
or on the border of the colony. Simulations car-
ried out on both limits of the exchange probability
agree with these theoretical limits, but do not pro-
vide further information. For this reason, we im-
plemented the one-half exchange probability in our

1Remember it is not universal because it depends on the
details of the network.
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Figure 4: (a) Cell overlapping does not change the max-
imum neighbor number of six; thus, the underlying lat-
tice is topologically triangular (yellow lines). (b) The
average neighbor number versus layer number quickly
drops to one. At t = 50 days, n ' 50, N ' 4000 and
z = 1.02, which means ps = 0.92.

simulations, using the “a priori equal probability”
principle.

By construction, there are no closed loops in the
network, thus deduction of the critical probability
was similar to that for a Bethe lattice or a tree
graph. However, unlike regular lattices/graphs, in
our model the neighbor number of a node is not
the same for all nodes due the randomness intro-
duced by space searching and the probability of
exchange. For this reason, we defined an average
neighbor number. In Fig. 4(a) each cell is depicted
by two concentric circles; the dark one represents
the rigid core and the lighter represents the corona
where overlapping is allowed. Note that the maxi-
mum neighbor number is six, regardless of the ex-
tent of the corona. In simulations a new cell must
be in contact with other cells, and overlapping will
modify the density of the colony. As mentioned,
this parameter will be useful for further study of
diffusion effects that are irrelevant to the present
work. Also, the random process of searching space
for proliferation will slightly modify the geometry
of the underlying network, but not its topology,
which will be the same as that of the triangular
lattice except for a few defects caused by a neigh-
bor number lower than six. Thus density, which is
relevant when studying the diffusion of nutrients,
oxygen or proteins for signaling, does not play any
role in the current percolation problem.

To roughly estimate z we built up a tree graph

Figure 5: Growth of the colony on a triangular lattice,
starting from the center (black dot). Each layer is de-
picted in a different color and contains three nodes with
z = 3 and the remainder with z = 1.

over a triangular lattice substrate. A possible con-
nection pattern of nodes in such a network is de-
picted in Fig. 5, which was built layer by layer with
each layer represented in a different color. Layer
n = 0 is the central black dot that represents the
seed. In this particular example, in each layer we
depict three nodes with z = 3 (darker dots), leav-
ing the remaining nodes with z = 1 (lighter dots).
It is clear that for any layer there are 6× n nodes
for n > 0; then to connect two layers without loops
we need on average z = n+1

n . Because 1 < z < 2
quickly decays with n, c.f. Fig. 4(b), we do expect
that the critical probability for percolation, given
by Eq. (1), will shift to pc = n

n+1 → 1 as n → ∞.

The size of the network will be N = 6
∑n
i=1 i + 1

leading to the limit pc −−−−→
N→∞

1. Thus, as the

colony increases in size, the percolation threshold
shifts towards 1. The main consequence is that
there is no chance to perform finite size scaling to
detect the critical transition point through simula-
tions, as in the case of 1D chains.

As mentioned before, in Figs. 1 and 2, the pro-
liferative cells are distributed in the two outermost
layers. This feature of the colony occurs because
the cells in the simulation are requested to prolif-
erate in random order. This is also the cause of
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Figure 6: Probability of percolation as a function of
ps for different colony sizes. Dots correspond to sim-
ulations and lines are theoretical fittings to estimate
the percolation threshold (see text). The gray line
is the theoretical Bethe result. Inset: Percolation
threshold pc at different sizes measured by simulations
(blue). Our simple theoretical approach overestimates
this threshold (red).

the observed circular shape of the colony. Because
the vertices of the hexagonal array shown in Fig. 5
have a lower probability of being chosen for prolifer-
ation, as system size increase s cells on their edges
will proliferate first, as at the beginning of each
time step they have more room to do so. Thus, the
estimated number of cells in each layer is under-
estimated, as is their neighbor number. As a con-
sequence, we expect that the actual value of pc as
a function of size or time will be much lower than
that predicted by Eq. (1) and our estimation of
z. A precise estimation of z will require statistical
treatment that is beyond the scope of this article.

The result implies that proper (mathematical)
percolation transition will occur at ps = 1, as in
1D percolation. This also implies that the only
way for a CSC to be at the border, for an arbitrarily
large colony, is when it is forced not to differentiate.
Nevertheless, monoclonal colonies cannot be main-
tained and grown forever. A 50-day experiment is
very long, and very uncommon in the literature.

We thus focus on the probability of a CSC being
at the border, P∞, whose behavior, as a function

of ps, is depicted in Fig. 6 for several times/sizes.
The relationship between time and size is bijective,
thus we report both values in the legend. In this
graph the dots are the result of the simulations pre-
sented in the previous section, for which the fre-
quency of CSCs at the border of the colony was
averaged over a thousand runs. To obtain suitable
fitting of these data as continuous functions of ps,
we used erf functions following Yonezawa’s classi-
cal work [23]. The inflection point of the erf curves
coincides with the percolation threshold, giving a
good estimate of pc. In addition, the theoreti-
cal result for the percolation parameter in a Bethe
lattice of order 3 is depicted in gray for compar-
ative purposes. Note that P∞ does not jump as
in Bethe percolation; the transition is continuous,
as known for several regular lattices, including the
triangular one. Gonzalez et al. [25] studied the
transitions of several forms of percolation in trian-
gular lattices, reporting their critical probabilities
using finite size scaling analysis. They found uni-
versal features with values between 0.5 and 0.8 for
the percolation threshold, depending on the prob-
lem. In contrast, but as expected, as our system
size increases the fitted curves become steeper and
steeper, and their inflection points predict a shift
of ps towards 1, as depicted by the blue dots in
the inset of Fig. 6. Comparison with our theoret-
ical result gives an expected overestimation of the
percolation threshold – the red line, as explained
before. We therefore hope to find that a CSC will
be at the border of the colony in half the runs when
we simulate a three-week experiment.

IV Conclusions

Metastasis is an intriguing feature of cancer inva-
sion. Most research in this field is guided by the bi-
ological point of view, even though there are many
mathematical models that attempt to describe it
[26–29].

In the examples of growth given in Fig. 1(a) and
Fig. 2(a), it becomes clear that under normal cul-
ture conditions CSCs remain in the inner core of
spheroids. This is also deduced from the low P∞
probability of finding a CSC at the border of the
colony, as shown in Fig. 6. If this could be observed
in the laboratory, the experiments that reveal a
CSC preference for hypoxic environments could be
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easily explained by this fact. It has been shown
experimentally that hypoxia maintains the undif-
ferentiated state of primary glioma cells, slowing
down the growth of glioma cells which are in a rel-
atively quiescent stage, increasing colony-forming
efficiency and the migration of glioma cells, and ele-
vating the expression of of stem cell markers. How-
ever, the expression of markers for stem cell dif-
ferentiation was reduced after hypoxia treatment
[13, 14]. It is also known that the inner core of
spheroids and tumors have a lack of oxygen and
nutrients, which are first consumed by the outer
layers of the tumor [30–33]. In this context, CSCs
constitute a phenotype that has evolved to survive
under hypoxic conditions in order to drive tumor
growth.

On the other hand, metastasis requires CSCs to
overcome three major barriers: the probability of
an active CSC being present at the border of the
colony, the probability of it detaching from the tu-
mor and the probability of it finding a suitable place
to proliferate. The results of the present work es-
tablish that the first of these probabilities is very
small, even for relatively small tumors, supporting
the rare occurrence of metastasis.

For large self-replication rates, possibly gener-
ated by environmental conditions, many active
CSCs would become candidates for detachment.
At present, we do not know of any report of a
high number of CSCs in tumors in vivo or in
transplanted xenographs under normal physiologi-
cal conditions that experimentally support a large6
self-replication rate as part of the metastasis mech-
anism.

An intriguing possibility is that metastasis begins
in the early stages of tumor progression [34–36].
This is deduced from Fig. 3(a) where the number
of active CSCs shows a peak for low ps and short
times. If this is the actual situation, a CSC must
detach from the primary tumor in its first week of
life, when the probability of being at the border is
close to 1, even for low values of self-replication.
Note that at this time the tumor consists of no
more than a dozen cells. This fact leads us to hy-
pothezise that a primary tumor is indeed the metas-
tasis of some small young tumors. According to
this hypothesis the primary tumor is in fact the
first colony able to fix and grow, while metastatic
tumors come from later CSCs that take more time
to attach successfully to a new location. The de-

tached cells must survive while competing for nutri-
ents and space with the primary spheroids, which
at this stage are ruthless adversaries [37].

Our two-dimensional model could be extended to
three dimensions; this would be more realistic but
also computationally more expensive. Preliminary
results are qualitatively similar to those reported
here, butso far we lack the statistics to perform
a quantitative comparison. Another feature, ob-
tained by changing geometrical constraints in our
code, are simulations of non-solid tumors such as
haematologic neoplasm; preliminary results show
that active CSCs are present in a larger proportion
there than in solid tumor spheroids. As a conse-
quence, there is a higher probability of CSCs de-
taching and developing metastasis in neoplasms.

In summary, percolation provides a way of de-
veloping a geometrical theory to support or com-
plement signaling pathways, quorum sensing and
other tools frequently used to study metasta-
sis. Further experimental research will elucidate
whether CSCs are the survivors with greatest fit-
ness, as suggested by our present results.
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Appendix: Simulation algorithm.

The simulations were carried out in an object-
oriented paradigm. Each cell belongs to one of the
following classes: Active CSC, active DCC, quies-
cent CSC or quiescent CSC. First we created an
active CSC object at the center of a square space
large enough to contain the final colony. Then for
each time step we requested, in random order, that
all objects belonging to an active class perform the
duplication procedure. In the left-hand column of
Fig. 7 we depict the flow chart of the duplication
procedure, whose steps are illustrated in the right-
hand column.
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Figure 7: Left: Flow chart for the proliferation process of each cell. Right: Illustration of the stages and outcomes
of the duplication process.

The duplication process starts when an active
cell, the parent, creates a copy of itself, the new
cell, in the same position. Then a random angle
0 ≤ rα < 2π is drawn from a uniform distribution
and the new cell will advance a certain distance
in the direction defined by this angle, such that its
border does not overlap with its parent’s core. This
distance was determined as 95% of the cell diame-
ter. If in its new position the border of the new cell

overlaps with the core of another cell, it moves back
to its initial position. Another random direction
is then defined, repeating the movement sequence.
The new cell will move forward and back, randomly
changing its direction until there is no overlapping;
thus we say that an empty spot is found. After 500
failed attempts to find an empty spot, the new cell
is destroyed and the parent cell changes to its re-
spective quiescent class. Conversely, if the new cell
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finds an empty spot, and if its parent is a DCC, it
sets its own class as an active DCC. On the other
hand, if the parent is a CSC, a new random num-
ber 0 ≤ rd < 1 is drawn to be compared with ps.
If rd < ps the new cell will set its class to active
CSC, otherwise the new cell class will be set to ac-
tive DCC. In the latter case a new random num-
ber 1 ≤ rm < 1 is drawn, and if the comparison
rm < 1/2 becomes true, the cells will exchange
their positions, leaving the CSC in the new spot
and the DCC in the position of its parent.

Note that quiescent cells will never be requested
to do anything; they do not move or duplicate in
these simulations. Their only role is to restrict the
movement of active cells. As a consequence, the
code runs very rapidly, even for large colonies.
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[10] L Beńıtez, L Barberis, C A Condat, Un-
derstanding the influence of substrate when
growing tumorspheres, BMC Cancer (In
press) (2021).

[11] J Wang, X Liu, Z Jiang, L Li, Z Cui, Y Gao,
D Kong, X Liu, A novel method to limit breast
cancer stem cells in states of quiescence, pro-
liferation or differentiation: Use of gel stress
in combination with stem cell growth factors,
Oncol. Lett. 12, 1355 (2016).

[12] Y C Chen, P N Ingram, S Fouladdel, S P Mc-
Dermott, E Azizi, M S Wicha, E Yoon, High-
throughput single-cell derived sphere forma-
tion for cancer stem-like cell identification
and analysis, Sci. Rep. 6, 27301 (2016).

[13] L Persano, E Rampazzo, A Della Puppa,
F Pistollato, G Basso, The three-layer
concentric model of glioblastoma: Cancer
stem cells, microenvironmental regulation,
and therapeutic implications, TheScientific-
WorldJo. 11, 1829 (2011).

[14] P Li, C Zhou, L Xu, H Xiao, Hypoxia
enhances stemness of cancer stem cells in
glioblastoma: An in vitro study, Int. J. Med.
Sci. 10, 399 (2013).

[15] C Zhang, Y Tian, F Song, C Fu, B Han,
Y Wang, Salinomycin inhibits the growth of
colorectal carcinoma by targeting tumor stem
cells, Oncol. Rep. 34, 2469 (2015).

[16] S Shankar, D Nall, S-N Tang, D Meeker,
J Passarini, J SharmaR, K Srivastava,
Resveratrol inhibits pancreatic cancer
stem cell characteristics in human and
KrasG12D transgenic mice by inhibit-
ing pluripotency maintaining factors and
epithelial-mesenchymal transition, PLoS
ONE 6, e16530 (2011).

130002-10

https://doi.org/10.1038/nm.4409
 https://doi.org/10.1371/journal.pcbi.1002316
 https://doi.org/10.1371/journal.pcbi.1002316
https://doi.org/10.1146/annurev.cellbio.22.010305.104154
https://doi.org/10.1146/annurev.cellbio.22.010305.104154
https://doi.org/10.1038/nrc2212
https://doi.org/10.1016/j.cell.2009.07.011
https://doi.org/10.1016/j.cell.2009.07.011
https://doi.org/10.1016/S0092-8674(00)81683-9
https://doi.org/10.3389/fphar.2019.00203
https://doi.org/10.1038/s41598-019-44537-0
https://doi.org/10.1016/j.physa.2019.121906
https://doi.org/10.1016/j.physa.2019.121906
https://doi.org/10.21203/rs.3.rs-67713/v1
https://doi.org/10.21203/rs.3.rs-67713/v1
https://doi.org/10.3892/ol.2016.4757
https://doi.org/10.1038/srep27301
https://doi.org/10.1100/2011/736480
https://doi.org/10.1100/2011/736480
doi:10.7150/ijms.5407
doi:10.7150/ijms.5407
https://doi.org/10.3892/or.2015.4253
https://doi.org/10.1371/journal.pone.0016530
https://doi.org/10.1371/journal.pone.0016530


Papers in Physics, vol. 13, art. 130002 (2021) / L. Barberis

[17] A Schneider, D Spitkovsky, P Riess, M Mol-
canyi, N Kamisetti, M Maegele, J Hescheler,
U Schaefer, “The good into the pot, the bad
into the crop!” — A new technology to free
stem cells from feeder cells, PLoS ONE 3,
e3788 (2008).

[18] A Chen, L Wang, S Liu, Y Wang, Y Liu,
M Wang, Attraction and compaction of mi-
gratory breast cancer cells by bone matrix pro-
teins through tumor-osteocyte interactions,
Sci. Rep. 8, 5420 (2018).

[19] J P Freyer, R M Sutherland, Regulation of
growth saturation and development of necro-
sis in EMT6/Ro multicellular spheroids by
the glucose and oxygen supply, Cancer Res.
46, 3504 (1986).

[20] C A Condat, S A Menchón, Ontoge-
netic growth of multicellular tumor spheroids,
Physica A 371, 76 (2006).

[21] S A Menchón, C A Condat, Cancer growth:
Predictions of a realistic model, Phys. Rev. E
78, 022901 (2008).

[22] L Barberis, C A Condat, Describing interac-
tive growth using vector universalities, Ecol.
Model. 227, 56 (2012).

[23] F Yonezawa, S Sakamoto, M Hori, Percola-
tion in two-dimensional lattices. I. A tech-
nique for the estimation of thresholds, Phys.
Rev. B 40, 636 (1989).

[24] K Christensen, N R Moloney, Complexity and
Criticality, Imperial College Press, London,
UK (2005).
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