[1] E Batlle, H Clevers, Cancer stem cells revisited, Nat. Med. 23, 1124 (2017).
https://doi.org/10.1038/nm.4409

[2] C A M La Porta, S Zapperi, J P Sethna, Senescent cells in growing tumors: Population dynamics and cancer stem cells, PLoS Comput. Biol. 8, e1002316 (2012).
https://doi.org/10.1371/journal.pcbi.1002316

[3] N A Lobo, Y Shimono, D Qian, M F Clarke, The biology of cancer stem cells, Annu. Rev. Cell Dev. Biol. 23, 675 (2007).
https://doi.org/10.1146/annurev.cellbio.22.010305.104154

[4] J Stingl, C Caldas, Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis, Nat. Rev. Cancer 7, 791 (2007).
https://doi.org/10.1038/nrc2212

[5] Y Shimono, M Zabala, R W Cho, N Lobo, P Dalerba, D Qian, M Diehn, H Liu, S P Panula, E Chiao, F M Dirbas, G Somlo, R A Reijo Pera, K Lao, M F Clarke, Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells, Cell 138, 592 (2009).
https://doi.org/10.1016/j.cell.2009.07.011

[6] D Hanahan, R A Weinberg, The hallmarks of cancer review, Cell 100, 57 (2000).
https://doi.org/10.1016/S0092-8674(00)81683-9

[7] P Jagust, B de Luxán-Delgado, B Parejo- Alonso, P Sancho, Metabolism-Based therapeutic strategies targeting cancer stem cells, Front. Pharmacol. 10, 203 (2019).
https://doi.org/10.3389/fphar.2019.00203

[8] A Waisman, F Sevlever, M Elías Costa, M S Cosentino, S G Miriuka, A C Ventura, A S Guberman, Cell cycle dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripotency, Sci. Rep. 9, 8051 (2019).
https://doi.org/10.1038/s41598-019-44537-0

[9] L Benitez, L Barberis, C A Condat, Modeling tumorspheres reveals cancer stem cell niche building and plasticity, Physica A 533, 121906 (2019).
https://doi.org/10.1016/j.physa.2019.121906

[10] L Benitez, L Barberis, C A Condat, Understanding the influence of substrate when growing tumorspheres, BMC Cancer (In press) (2021).
https://doi.org/10.21203/rs.3.rs-67713/v1

[11] J Wang, X Liu, Z Jiang, L Li, Z Cui, Y Gao, D Kong, X Liu, A novel method to limit breast cancer stem cells in states of quiescence, proliferation or differentiation: Use of gel stress in combination with stem cell growth factors, Oncol. Lett. 12, 1355 (2016).
https://doi.org/10.3892/ol.2016.4757

[12] Y C Chen, P N Ingram, S Fouladdel, S P McDermott, E Azizi, M S Wicha, E Yoon, High-throughput single-cell derived sphere formation for cancer stem-like cell identification and analysis, Sci. Rep. 6, 27301 (2016).
https://doi.org/10.1038/srep27301

[13] L Persano, E Rampazzo, A Della Puppa, F Pistollato, G Basso, The three-layer concentric model of glioblastoma: Cancer stem cells, microenvironmental regulation, and therapeutic implications, TheScientificWorldJo. 11, 1829 (2011).
https://doi.org/10.1100/2011/736480

[14] P Li, C Zhou, L Xu, H Xiao, Hypoxia enhances stemness of cancer stem cells in glioblastoma: An in vitro study, Int. J. Med. Sci 10, 399 (2013).
https://doi.org/10.7150/ijms.5407

[15] C Zhang, Y Tian, F Song, C Fu, B Han, Y Wang, Salinomycin inhibits the growth of colorectal carcinoma by targeting tumor stem cells, Oncol. Rep. 34, 2469 (2015).
https://doi.org/10.3892/or.2015.4253

[16] S Shankar, D Nall, S-N Tang, D Meeker, J Passarini, J Sharma, R K Srivastava, Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition, PLoS ONE 6, e16530 (2011).
https://doi.org/10.1371/journal.pone.0016530

[17] A Schneider, D Spitkovsky, P Riess, M Molcanyi, N Kamisetti, M Maegele, J Hescheler, U Schaefer, The good into the pot, the bad into the crop! - A new technology to free stem cells from feeder cells, PLoS ONE 3, e3788 (2008).
https://doi.org/10.1371/journal.pone.0003788

[18] A Chen, L Wang, S Liu, Y Wang, Y Liu, M Wang, H Nakshatri, B-Y Li, H Yokota, Attraction and compaction of migratory breast cancer cells by bone matrix proteins through tumor-osteocyte interactions, Sci. Rep. 8, 5420 (2018).
https://doi.org/10.1038/s41598-018-23833-1

[19] J P Freyer, R M Sutherland, Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply, Cancer Res. 46, 3504 (1986).
https://cancerres.aacrjournals.org/content/46/7/3504.short

[20] C A Condat, S A Menchón, Ontogenetic growth of multicellular tumor spheroids, Physica A 371, 76 (2006).
https://doi.org/10.1016/j.physa.2006.04.082

[21] S A Menchón, C A Condat, Cancer growth: Predictions of a realistic model, Phys. Rev. E 78, 022901 (2008).
https://doi.org/10.1103/PhysRevE.78.022901

[22] L Barberis, C A Condat, Describing interactive growth using vector universalities, Ecol. Model. 227, 56 (2012).
https://doi.org/10.1016/j.ecolmodel.2011.12.011

[23] F Yonezawa, S Sakamoto, M Hori, Percolation in two-dimensional lattices. I. A technique for the estimation of thresholds, Phys. Rev. B 40, 636 (1989).
https://doi.org/10.1103/PhysRevB.40.636

[24] K Christensen, N R Moloney, Complexity and Criticality, Imperial College Press, London (2005).
https://doi.org/10.1142/p365

[25] M I González, P Centres, W Lebrecht, A J Ramirez-Pastor, F Nieto, Site-bond percolation on triangular lattices: Monte Carlo simulation and analytical approach, Physica A 392, 6330 (2013).
https://doi.org/10.1016/j.physa.2013.09.001

[26] K Iwata, K Kawasaki, N Shigesada, A dynamical model for the growth and size distribution of multiple metastatic tumors, J. Theor. Biol. 203, 177 (2000).
https://doi.org/10.1006/jtbi.2000.1075

[27] S A Menchón, C A Condat, Modeling tumor cell shedding, Eur. Biophys. J. 38, 479 (2009).
https://doi.org/10.1007/s00249-008-0398-5

[28] J B McGillen, E A Gaffney, N K Martin, P K Maini, A general reaction-diffusion model of acidity in cancer invasion, J. Math. Biol. 68, 1199 (2014).
https://doi.org/10.1007/s00285-013-0665-7

[29] A Rhodes, T Hillen, A mathematical model for the immune-mediated theory of metastasis, J. Theor. Biol. 482, 109999 (2019).
https://doi.org/10.1016/j.jtbi.2019.109999

[30] A I Liapis, G G Lipscomb, O K Crosser, E Tsiroyianni-Liapis, A model of oxygen diffusion in absorbing tissue, Math. Modell. 3, 83 (1982).
https://doi.org/10.1016/0270-0255(82)90014-8

[31] P J Robinson, S I Rapoport, Model for drug uptake by brain tumors: Effects of osmotic treatment and of diffusion in brain, J. Cerebr. Blood F. Met. 10, 153 (1990).
https://doi.org/10.1038/jcbfm.1990.30

[32] Y Jiang, J Pjesivac-Grbovic, C Cantrell, J P Freyer, A multiscale model for avascular tumor growth, Biophys. J. 89, 3884 (2005).
https://doi.org/10.1529/biophysj.105.060640

[33] J A Bull, F Mech, T Quaiser, S L Waters, H M Byrne, Mathematical modelling reveals cellular dynamics within tumour spheroids, PLoS Comput. Biol. 16, e1007961 (2020).
https://doi.org/10.1371/journal.pcbi.1007961

[34] J W Gray, Evidence emerges for early metastasis and parallel evolution of primary and metastatic tumors, Cancer Cell 4, 4 (2003).
https://doi.org/10.1016/S1535-6108(03)00167-3

[35] H Hosseini, M M Obradovic, M Hoffmann, K L Harper, M S Sosa, M Werner-Klein, L K Nanduri, C Werno, C Ehrl, M Maneck, N Patwary, G Haunschild, M Guzvic, C Reimelt, M Grauvogl, N Eichner, F Weber, A D Hartkopf, F A Taran, S Y Brucker, T Fehm, B Rack, S Buchholz, R Spang, G Meister, J A Aguirre-Ghiso, C A Klein, Early dissemination seeds metastasis in breast cancer, Nature 540, 552 (2016).
https://doi.org/10.1038/nature20785

[36] N Linde, M Casanova-Acebes, M S Sosa, A Mortha, A Rahman, E Farias, K Harper, E Tardio, I Reyes Torres, J Jones, J Condeelis, M Merad, J A Aguirre-Ghiso, Macrophages orchestrate breast cancer early dissemination and metastasis, Nature Commun. 9, 1 (2018).
https://doi.org/10.1038/s41467-017-02481-5

[37] L Barberis, M A Pasquale, C A Condat, Joint fitting reveals hidden interactions in tumor growth, J. Theor. Biol. 365, 420 (2015).
https://doi.org/10.1016/j.jtbi.2014.10.038