[1] N Haleh, J Aashish, P Jaewoo, E Arezoo, Advanced micro-and nano-gas sensor technology: A review, Sensors 19, 1285 (2019).
https://doi.org/10.3390/s19061285

[2] S Yang, C Jiang, S H Wei, Gas sensing in 2D materials, Appl. Phys. Rev. 4, 021304 (2017).
https://doi.org/10.1063/1.4983310

[3] C Tan, X Cao, X J Wu, Q He, J Yang, H Zhang, et. al, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev. 117, 6225 (2017).
https://doi.org/10.1021/acs.chemrev.6b00558

[4] J Chen, L Xu, W Li, X Gou, α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications, Adv. Mater. 17, 582 (2005).
https://doi.org/10.1002/adma.200401101

[5] V Singh, D Joung, L Zhai, S Das, S I Khondaker, S Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci. 56, 1178 (2011).
https://doi.org/10.1016/j.pmatsci.2011.03.003

[6] P Sun, Z Kunlin, H Wang, Recent developments in graphene-based membranes: Structure, mass-transport mechanism and potential applications, Adv. Mater. 28, 2287 (2016).
https://doi.org/10.1002/adma.201502595

[7] D N Quang, L Tuan, N T Tien, Electron mobility in Gaussian heavily doped ZnO surface quantum wells, Phys. Rev. B 77, 125326 (2008).
https://doi.org/10.1103/PhysRevB.77.125326

[8] B Huang, Z Li, Z Liu, G Zhou, S Hao, J Wu, B L Gu, W Duan, Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor, J. Phys. Chem. C 112, 13442 (2008).
https://doi.org/10.1021/jp8021024

[9] F Schwierz, Graphene transistors, Nature Nanotech. 5, 487 (2010).
https://doi.org/10.1038/nnano.2010.89

[10] A H Castro Neto, F Guinea, N M R Peres, K S Novoselov, A K Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009).
https://doi.org/10.1103/RevModPhys.81.109

[11] F Bonaccorso, Z Sun, T Hasan, A Ferrari, Graphene photonics and optoelectronics, Nature photon. 4, 611 (2010).
https://doi.org/10.1038/nphoton.2010.186

[12] P Avouris, Graphene: Electronic and photonic properties and devices, Nano Lett. 10, 4285 (2010).
https://doi.org/10.1021/nl102824h

[13] P Vogt, P D Padova, C Quaresima, J Avila, E Frantzeskakis, M C Asensio, A Resta, B Ealet, G L Lay, Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett. 108, 155501 (2012).
https://doi.org/10.1103/PhysRevLett.108.155501

[14] A Ziletti, A Carvalho, D K Campbell, D F Coker, A H Castro Neto, Oxygen defects in phosphorene, Phys. Rev. Lett. 114, 046801 (2015).
https://doi.org/10.1103/PhysRevLett.114.046801

[15] X Deng, K Yao, K Sun, W X Li, J Lee, C Matranga, Growth of single-and bilayer ZnO on Au(111) and interaction with copper, J. Phys. Chem. C 117, 11211 (2013).
https://doi.org/10.1021/jp402008w

[16] X Blase, A Rubio, S G Louie, M L Cohen, Quasiparticle band structure of bulk hexagonal boron nitride and related systems, Phys. Rev. B 51, 6868 (1995).
https://doi.org/10.1103/PhysRevB.51.6868

[17] D W Latzke, W Zhang, A Suslu, T R Chang, H Lin, H T Jeng, S Tongay, J Wu, A Bansil, A Lanzara, Electronic structure, spin-orbit coupling, and interlayer interaction in bulk MoS2 and WS2, Phys. Rev. B 91, 235202 (2015).
https://doi.org/10.1103/PhysRevB.91.235202

[18] S Zhang, J Zhou, Q Wang, X Chen, Y Kawazoe, P Jena, Penta-graphene: A new carbon allotrope, P. Natl. Acad. Sci. U.S.A. 112, 2372 (2015).
https://doi.org/10.1073/pnas.1416591112

[19] T Stauber, J I Beltran, J Schliemann, Tight-binding approach to penta-graphene, Sci. Rep. 6, 1 (2016).
https://doi.org/10.1038/srep22672

[20] T Y Mi, N D Khanh, R Ahuja, N T Tien, Diverse structural and electronic properties of pentagonal SiC2 nanoribbons: A first-principles study, Mater. Today Comm. 26, 102047 (2021).
https://doi.org/10.1016/j.mtcomm.2021.102047

[21] J Sun, Y Guo, Q Wang, Y Kawazoe, Thermal transport properties of penta-graphene with grain boundaries, Carbon 145, 445 (2019).
https://doi.org/10.1016/j.carbon.2019.01.015

[22] H Einollahzadeh, R Dariani, S Fazeli, Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations, Solid State Comm. 229, 1 (2016).
https://doi.org/10.1016/j.ssc.2015.12.012

[23] X Wu, V Varshney, J Lee, T Zhang, J L Wohlwend, A K Roy, T Luo, Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity, Nano Lett. 16, 3925 (2016).
https://doi.org/10.1021/acs.nanolett.6b01536

[24] S Winczewski, J Rybicki, Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies, Carbon 146, 572 (2019).
https://doi.org/10.1016/j.carbon.2019.02.042

[25] R Krishnan, W S Su, H T Chen, A new carbon allotrope: Penta-graphene as a metal-free catalyst for CO oxidation, Carbon 114, 465 (2017).
https://doi.org/10.1016/j.carbon.2016.12.054

[26] H Qin, C Feng, X Luan, D Yang, First-principles investigation of adsorption behaviors of small molecules on penta-graphene, Nanoscale Res. Lett. 13, 1 (2018).
https://doi.org/10.1186/s11671-018-2687-y

[27] C P Zhang, B Li, Z G Shao, First-principle investigation of CO and CO2 adsorption on Fe-doped penta-graphene, Appl. Surf. Sci. 469, 641 (2019).
https://doi.org/10.1016/j.apsusc.2018.11.072

[28] P F Yuan, Z H Zhang, Z Q Fan, M Qiu, Electronic structure and magnetic properties of penta-graphene nanoribbons, Phys. Chem. Chem. Phys. 19, 9528 (2017).
https://doi.org/10.1039/C7CP00029D

[29] C He, X F Wang, W X Zhang, Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons, Phys. Chem. Chem. Phys. 19, 18426 (2017).
https://doi.org/10.1039/C7CP03404K

[30] N T Tien, V T Phuc, R Ahuja, Tuning electronic transport properties of zigzag graphene nanoribbons with silicon doping and phosphorus passivation, AIP Adv. 8, 085123 (2018).
https://doi.org/10.1063/1.5035385

[31] N T Tien, P T B Thao, V T Phuc, R Ahuja, Electronic and transport features of sawtooth penta-graphene nanoribbons via substitutional doping, Physica E: Low Dimens. Syst. Nanostruct. 114, 113572 (2019).
https://doi.org/10.1016/j.physe.2019.113572

[32] N T Tien, P T B Thao, V T Phuc, R Ahuja, Influence of edge termination on the electronic and transport properties of sawtooth penta-graphene nanoribbons, J. Phys. Chem. Solids 146, 109528 (2020).
https://doi.org/10.1016/j.jpcs.2020.109528

[33] Y H Li, P F Yuan, Z Q Fan, Z H Zhang, Electronic properties and carrier mobility for penta-graphene nanoribbons with nonmetallic-atom-terminations, Org. Electron. 59, 306 (2018).
https://doi.org/10.1016/j.orgel.2018.05.039

[34] T Y Mi, D M Triet, N T Tien, Adsorption of gas molecules on penta-graphene nanoribbon and its implication for nanoscale gas sensor, Physics Open 2, 100014 (2020).
https://doi.org/10.1016/j.physo.2020.100014

[35] A Saffarzadeh, Modeling of gas adsorption on graphene nanoribbons, J. Appl. Phys. 107, 114309 (2010).
https://doi.org/10.1063/1.3409870

[36] J Taylor, H Guo, J Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63, 245407 (2001).
https://doi.org/10.1103/PhysRevB.63.245407

[37] M Brandbyge, J L Mozos, P Ordejon, J Taylor, K Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65, 165401 (2002).
https://doi.org/10.1103/PhysRevB.65.165401

[38] J Zhao, A Buldum, J Han, J P Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles, Nanotechnology 13, 195 (2002).
https://doi.org/10.1088/0957-4484/13/2/312

[39] J W Feng, Y J Liu, H X Wang, J X Zhao, Q H Cai, X Z Wang, Gas adsorption on silicene: A theoretical study, Comp. Mater. Sci. 87, 218 (2014).
https://doi.org/10.1016/j.commatsci.2014.02.025

[40] P J Perdew, K Burke, M Ernzerhof, Generalized gradient approximation made simple, Physical Rev. Lett. 77, 3865 (1996).
https://doi.org/10.1103/PhysRevLett.77.3865

[41] P Pyykko, M Atsumi, Molecular single-bond covalent radii for elements 1-118, Chem. Eur. J. 15, 186 (2009).
https://doi.org/10.1002/chem.200800987

[42] L Tang, M Q Cheng, Q Chen, T Huang, K Yang, W Q Huang, W Hu, G F Huang, Ultrahigh sensitivity and selectivity of pentagonal SiC2 monolayer gas sensors: The synergistic effect of composition and structural topology, Phys. Status Solidi B 257, 1900445 (2020).
https://doi.org/10.1002/pssb.201900445