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Licence: Creative Commons Attribution 4.0
DOI: https://doi.org/10.4279/PIP.140001

www.papersinphysics.org

ISSN 1852-4249

Physical distance characterization using pedestrian dynamics simulation
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Zuberbuhler2, F. Gorostiaga2

In the present work we study how the number of simulated customers (occupancy) af-
fects social distance in an ideal supermarket, considering realistic typical dimensions and
processing times (product selection and checkout). From the simulated trajectories we
measure social distance events of less than 2 m, and their duration. Among other observ-
ables, we define a physical distance coefficient that informs how many events (of a given
duration) each agent experiences.

I Introduction

One of the measures widely applied to mitigate the
Coronavirus disease (COVID-19) outbreak is social
distancing; that is, maintaining a certain physical
distance between people [1]. This distance acts as a
physical barrier to droplets released from the nose
or mouth of a potentially infected person. When
another person is too close, they could breathe
in the droplets and become infected. Although
COVID-19 is our current concern, physical dis-
tancing could be useful for any contagious disease.

We should emphasize that a physical distance
of 1-2 m is not sufficient for some other types of
transmissionsuch as transmission by aerosols [2, 3]
or fomites [3]. Moreover, many other important
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factors, such as good ventilation (for indoor sys-
tems) and the use of face masks, are not included
in our analysis.

Recent studies [4, 5] have suggested combining
microscopic agent simulation with general disease-
transmission mechanisms. However, because of un-
certainties and the complexity of current knowledge
for quantifying COVID-19 transmission processes,
here we will not consider any particular contagion
mechanism. We will focus instead on studying the
distance between people in an everyday pedestrian
facility as an isolated aspect to be integrated in the
future by experts considering all mechanisms for
any particular disease propagation. Additionally,
findings have been reported from recent physical
distance studies that considered field data from a
train station [6] and simulations of bottleneck sce-
narios [7].

One of the key questions we will try to answer
is how to describe the physical distance for any
given occupation of an establishment. To solve this
problem, we must consider the displacements and
trajectories of pedestrians while they perform cer-
tain tasks, thus the obvious tool to use is pedes-

140001-1



Papers in Physics, vol. 14, art. 140001 (2022) / D. R. Parisi et al.

trian simulation. The time evolution of positions
of simulated agents can provide not only the rela-
tive distance between agents, but also the duration
of events in which the recommended social distance
is not kept.

Many industries and shops have been closed in
different phases of the COVID-19 pandemic. How-
ever, grocery shops have to be kept open, and su-
permarkets in particular. To prevent crowding and
to keep some physical distance between customers,
the authorities reduced the allowed capacity. Dif-
ferent countries’ regulations have adopted social
distance requirements between 1 and 2 m [6]. In
the present study we will consider a distance of 2
m as the social distance threshold.

The main objective of this work is to introduce a
methodology for characterizing and analyzing the
physical distance between agents. We propose to
investigate how the allowed capacity affects the
physical distance between shoppers in an ideal su-
permarket of 448 m2. The results should not be ex-
trapolated directly to other supermarkets or facil-
ities; nevertheless, the methodology could be used
with other trajectories based either on simulations
or field data obtained from a pedestrian system.

II Models

In order to simulate the complex environment and
the agents’ behavior, the proposed model involves
three levels of complexity: operational, tactical,
and strategic [8].

i Strategic level

The most general level of the model consists of a
master plan for the agent when it is created. In
practical terms, for the present system it gives a
list of np products for agents to acquire (a shopping
list). Each of the np items is chosen at random
from a total of mp available products. Also, they
are identified with a unique target location (xpn)
in the supermarket.

Once the agent is initialized with its shopping
list, the strategic level shows the first item on the
list to the agent. The agent will move toward it
using the lower levels of the model. When the agent
reaches the position of the product, it will spend
a picking time (tp) choosing and picking up the

product, after which the strategic level will present
the next item on the list to the agent.

When the list of products is complete, the agent
must proceed to the least busy supermarket check-
out line. It will adopt queuing behavior until it gets
to the checkout desk and spends time tco processing
its purchase.

ii Tactical level

The function of the tactical level is to present the
agent with successive visible targets to guide it to
the location of the desired product (xpn) or check-
out line. As input the tactical module takes the
current agent position (xi(t)) and the position of
the current product (xpn) on the list. The output
is a temporal target (xv(t)) visible from the current
position of the agent. The definition of visibility is
that if we take a virtual segment between (xi(t))
and (xv(t)), this segment does not intersect any of
the walls or obstacles (shelves).

The information delivered by the tactical mod-
ule is obtained by implementing a squared network
connecting all the accessible areas of the simulated
layout (see Fig. 2). For any pair of points within the
walkable domain, the corresponding nearest points
on the network are found and then the shortest
path between these points is computed using the
A* algorithm [9].

Once the path in the network is defined, the tem-
porary target xv(t) is chosen as the farthest visible
point on that path, seen from the current agent po-
sition. Clearly, xv(t) will change with time, as the
position of the agent changes. When the product
target is visible from the agent’s position, this is
set as the visible target and the network path is
no longer considered until a new product should be
found.

iii Operational level

For the lowest level describing the agents’ short-
range movements we propose an extended version
of the Contractile Particle Model (CPM) [10]. This
will provide efficient navigation to prevent poten-
tial collisions with other agents and obstacles. The
basic model is a first-order model in which parti-
cles have continuous variable radii, positions and
velocities that change according to certain rules.
Specifically, the position is updated as
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xi(t+ ∆t) = xi(t) + vi∆t , (1)

where vi is the desired velocity and xi(t) the po-
sition at time t. The radius of the ith particle (ri)
is dynamically adjusted between rimin and rimax.
When this radius has large values, it represents the
personal distance necessary for taking steps, but
when it has low values it represents a hard incom-
pressible nucleus that limits maximum densities.

When particles are not in contact, the desired
velocity vi points toward the visible target with a
magnitude proportional to its radius,

vi = eit v , (2)

where the direction eit and the magnitude v are
defined by the following equations:

eit =
(Xv −Xi)

|(Xv −Xi)|
, (3)

v = vd[
(r − rmin)

(rmax − rmin)
] , (4)

where vd is the desired speed.
While the radius has not reached the maximum

rmax, it increases at each time step, following

∆r =
rmax
( τ

∆t )
. (5)

τ being a characteristic time at which the agent
reaches its desired speed as if it was free, and ∆t
is the simulation time step of Eq. (1). When two
particles come into contact (dij = |xi − xj | −
(ri + rj) < 0) both radii collapse instantaneously
to the minimum values, while an escape velocity
moves the particles in directions that will separate
the overlap:

eij =
(xi − xj)

|xi − xj |
. (6)

The escape velocity has the magnitude of the free
speed and can thus be written as vie = vd eij . This
velocity is only applied during one simulation step
because, as the radii collapse simultaneously, the
agents no longer overlap.

So far we have described the basic CPM as it
appears in Ref. [10]. This model satisfactorily
describes experimental data of specific flow rates
and fundamental diagrams of pedestrian dynamics.
However, particles do not anticipate any collisions,
and this capacity is a fundamental requirement for
simulating the ideal supermarket (displaying low
and medium densities, and agents circulating in dif-
ferent directions). We therefore propose extending
the calculation of agent velocity (Eq. (2)) by con-
sidering a simple avoidance mechanism.

The general idea is that the self-propelled par-
ticle will produce an action only by changing its
desired velocity vi(t), as stated in Ref. [11]. In
this case, any change in the direction of desired ve-
locity v through the new mechanism will depend
on the neighbor particles and obstacles. First, the
collision vector (nc

i) is calculated as

nc
i = eij Ap e

−dij/Bp cos(θj)

+ eik Aw e−dij/Bw cos(θk) + η̂ , (7)

where j indicates the nearest visible neighbor, k
the nearest point of the nearest visible wall or ob-
stacle, and η̂ is a noise term for breaking possible
symmetric situations.

Then the avoidance direction is obtained from

eia =
(nc

i + eit)

|(nc
i + eit)|

, (8)

and finally, the velocity of the particle to be used
in Eq. (1), if particles are not in contact, is

vi = v eia. (9)

In Fig. 1 the vectors associated with the original
and modified model can be seen in detail.

For the sake of comparison with force-based mod-
els, we also implement other operational models:
the Social Force Model [12, 13] and the Predictive
Collision Avoidance (PCA) model [14]. The results
for all three operational models are compared for
selected observables, while the deeper study is per-
formed using the rule-based model (CPM).

a States of agents

Because the agents must perform different tasks,
more complex than just going from one point to
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Figure 1: Contractile particle model. A: Two particles without contact. B: The radii of two particles that
overlapped in the previous time step (dashed circles) collapse, and the particles take the escape velocity. A and
B correspond to the original CPM. C: Modification considering an avoidance direction.

another, it was necessary to define five behavioral
states. This was achieved by setting different model
parameters and movement patterns. More con-
cisely, the five behavioral states of agents were:

- Going : This is the normal walking behavior
when going from one arbitrary point to another
with the standard velocity and model parameters.
Only in this state does the agent use the modified
CPM velocity (Eq. (9)) to avoid potential collisions.

The other behavioral states use only the basic
CPM (Eqs. (1) to (6)).

- Approaching : When the agent is closer than
2 m to the current product, it reduces its desired
speed and, because of how parameters are set, it
will not be forced to reach it if there is another
agent buying a product in the same target xpn.

- Picking : Once the agent reaches the product
(closer than 0.1 m) a timer starts and it will remain
in the same position (Eq. (1) does not update its
position) until the picking time (tp) is up.

- Leaving : After spending time (tp), the agent
leaves the current location and goes to the next
product on the list. While abandoning this position
it could find other waiting agents (in approaching
behavioral state), so its parameters must be such
that it can make its way through. Once the agent is
farther than 2 m from the last product, it changes
to the ”going” behavioral state.

- Queuing : Finally, when the agent completes its
shopping list it proceeds to the checkout desks by
choosing the one with the shortest line. It waits
at a distance of 1.5 m from the previous queuing

agent, and when it reaches the checkout position it
remains there for tco time.

By considering these behavioral states in the
agent model, the conflicts and deadlock situations
are minimized. This model improvement thus en-
ables us to simulate higher densities than with the
basic operational models.

III Simulations

The 448 m2 site of the ideal supermarket to be
simulated is shown in Fig. 2. The dimensions of
shelf (1 m x 10 m) and aisle width (2 m) are taken
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Figure 2: The ideal supermarket layout. A: Only walls
and obstacles. B: The other model components as de-
scribed in section II.
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Table 1: Parameters of the CPM operational model for all the behavioral states.

Behavioral State Going Approaching Picking Leaving Queuing
rmin (m) 0.1 0.1 0.2 0.1 0.1
rmax (m) 0.37 0.35 0.2 0.3 0.12
vd (m/s) 0.7 0.5 0 0.9 0 or 0.5

from typical real systems. The different processing
times and other data considered were provided by
an Argentine supermarket chain.

We define N as the allowed capacity or the oc-
cupation of the supermarket; i.e., the total number
of agents buying simultaneously inside the system.
This is the most important input to be varied in our
study and it ranges from N = 2 to N = 92. Dur-
ing the pandemic social groups are not allowed to
enter commercial buildings, so we focus our study
on single agents.

During the first wave of the pandemic there were
long queues outside supermarkets, caused by ca-
pacity limitations, fear of shortages, and limited
hours of operation. We therefore assume that out-
side the shop there is an infinite queue of clients
who enter in order as the occupancy limit allows.
The agent generator produces an inflow of 1 agent
every 5 s until it reaches the N value for the simu-
lation. From that moment on, the agent generator
monitors occupation, generating a new agent ev-
ery time an existing agent completes its tasks and
is removed from the simulation. By doing this, the
value of N is maintained constant over the entire
simulation.

Every agent created by the generator is equipped
with a shopping list of exactly np = 15 items that,
for simplicity, are chosen randomly from a total of
228 available items (shown in Fig. 2B). The corre-
sponding product locations (xpn) are separated by
one meter from adjacent locations. Agents visit-
ing the products on their lists spend a picking time
with a uniform distribution ((tp) ∈ [60s, 90s]). Af-
ter completing the lists, agents choose the shortest
queue to one of the eight checkout points shown
in Fig. 2B. The ideal supermarket has a maximum
of four queues, each leading to two checkout desks.
One of the strategies adopted in the supermarkets
of Argentina was delimitation of the positions on
the floor to guarantee the minimum physical dis-
tance (1.5 m) while queuing for checkouts. The

first positions in these queues are at a distance of 3
m (at y = 4 m, in Fig. 2) from the checkout points.
Once an agent reaches the cashier (at y = 1 m,
in Fig. 2) it spends a checkout time tco uniformly
distributed between tco ∈ [120 s, 240 s].

For each value of N we simulated 2 h (7200 s) and
recorded the state of the system every ∆t2 = 0.5
s, thus producing 14400 data files with agents’ po-
sitions, velocity, and behavioral state. The simu-
lation time step ∆t used in Eq. (1) for all sim-
ulations was ∆t = 0.05 s. The noise term in
Eq. (7) is a random vector, whose components
ηx and ηy are uniformly distributed in the range
ηx = ηy = [−0.1 m/s, 0.1 m/s]. And the relax-
ation time τ is set to τ = 0.5 s. The remaining
model parameters depend on the behavioral state of
the agent. For the case of ”going”, the parameters
of the avoidance mechanism described in Eq. (7)
are Aa = 1.25, Ba = 1.25 m, Aw = 15 and
Bw = 0.15 m. The other behavioral states im-
plement only the original CPM (without the avoid-
ance mechanism) with the parameters displayed in
Table 1.

IV Results

i General aspects

We first show general results of the simulated
supermarket by displaying typical trajectories
(Fig. 3) and density fields (Fig. 4). Figure 3 plots
ten randomly chosen trajectories in the second hour
of simulations for the selected N values. Quali-
tatively, more intricate trajectory patterns can be
seen as occupancy increases. However, in all cases
it can be observed that the available area is uni-
formly visited by simulated agents while selecting
the products on their list.

Complementary information is shown in Fig. 4,
where density is averaged overl the entire simula-
tion time (2 h). As expected, greater occupancy
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Figure 3: Ten random trajectories were chosen for different occupancies. A: N = 14, B: N = 35, C: N = 62,
D: N = 92.

presents higher mean density values. Moreover,
these density fields present higher values at the
spots where agents stay longer, thus revealing prod-
uct selection points and predefined queuing places.

Also, as a macroscopic observable of the system,
we study the number of agents that could be pro-
cessed (i.e., complete the shopping list and exit the
supermarket within the two hours simulated) and
the mean residence time for those agents. These
results are presented in Fig. 5. As can be observed,
both quantities increase monotonically with the al-
lowed occupancy for the studied range of values and
the supermarket setup, considering eight checkout
desks. Even though the agents purchase the same
number of items, the trajectories generated present
great variability in residence times.
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Figure 4: Density maps averaged over the 2 h simula-
tion time for different occupancies. A: N = 14, B:
N = 35, C: N = 62, D: N = 92.

Furthermore, it can be seen that different op-
erational models display similar observables. The
SFM [12, 13] and PCA [12, 14] models are force-
based models that present more limitations in
terms of the maximum density they can simulate
before forces are balanced (generating deadlocks)
for the complex scenarios and behavior considered.
This is why the maximum occupancy studied with
these models is lower than that simulated with the
CPM described in section II.

ii Distance analysis

In this subsection we characterize the distance be-
tween agents during simulations with the modified
CPM for different allowed capacities. An interest-
ing outcome is the distance to the first neighbor for
each agent shown in Fig. 6.

The probability density function (PDF) of first-
neighbor distances (dfn) shows that for lower oc-
cupancy of the simulated supermarket, the prob-
ability of having the first neighbors further away
than dfn ∼ 5 m is greater. On the other hand,
higher occupancy values generate higher probabil-
ities of having a distance of less than 5 m. In par-
ticular, all distributions show a maximum probable
value around dfn ∼ 4 m. Moreover, the height of
these probability peaks decreases for lower occu-
pancy values.

Now we take the physical distance threshold of
2 m, as discussed in section I, and calculate the
related probabilities of agents below this critical
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Figure 5: A: Mean residence time of agent as a function of occupation, for three different operational models.
Error bars indicate one standard deviation. B: Number of agents processed per hour for the entire two-hour
simulations, and also for the different operational models.

social distance. The first observable we calculate
is the probability of the first neighbor being closer
than 2 m (Pfn<2m). In other words, this is the
probability of having at least one neighboring agent
within 2 m. This is determined by averaging the
data recorded every ∆t2 = 0.5 s, from minute 20
to 120 as shown in Eq. (10)

Pfn<2m =
1

nti

ti=14400∑
ti=2400

nfn2m

N
, (10)

0 5 10 15 20 25 30
Distance to First Neighbor (m) 

0

0.05

0.1

0.15

0.2

0.25

0.3

PD
F

N=14
N=35
N=62
N=92

Figure 6: Probability density function of first neighbor
distances.

where nti = 12000 = 14400 − 2400 is the data at
recorded times after 20 min, N is the occupancy
and nfn2m is the number of particles having a first
neighbor at less than 2 m. Note that if two particles
i and j are the only particles at less than 2 m,
nfn2m = 2. Moreover, when j is the first neighbor
of i, i will not necessarily be the first neighbor of j.

The above probability (Pfn<2m) only considers
whether the first neighbor is closer than 2 m; it does
not consider whether there are many occurrences of
neighbors at less than 2 m. For this reason we now
take into account the probability that a given pair
of agents are within 2 m of one another (Ppair<2m)

Ppair<2m =
1

nti

ti=14400∑
ti=2400

np2m
[N (N − 1)]/2

, (11)

where np2m is the number of pairs of particles at a
distance closer than 2 m and [N (N − 1)]/2 is the
total number of possible pairs having N particles
in the system. In this case, if only particles i and j
are closer than 2 m, np2m = 1 because one pair is
counted.

In Fig. 7 both probabilities (Pfn<2m and
Ppair<2m) are displayed for the modified CPM and
also for comparison with the SFM and the PCA
model. It can be seen that the probability of hav-
ing the nearest neighbor at less than 2 m increases
monotonically with the allowed capacity. How-
ever, pair probability quickly increases for low oc-
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Figure 7: A: Probability of having the first neighbor closer than 2 m (Eq. (10)). B: Probability that a given pair
of agents are within 2 m of one another (Eq. (11)).

cupancy, and after N ∼ 15 remains almost con-
stant, indicating that the number of pairs np2m
scaled with N as the number of total possible pairs
(∼ N2).

Furthermore, Fig. 7 indicates that different oper-
ational models display similar macroscopic behav-
ior in terms of social distance, at least for values
below or above 2 m.

The above analysis focused on the occurrence of
certain distances between simulated agents, but the
duration of these events was not explicitly consid-
ered. This will be done in the following subsection.

iii Duration of social distance events

Here we study the time that events last when pairs
of agents are found at less than 2 m (see section I).
These events occur mainly when agents are select-
ing products at neighboring product locations or
when queuing at the supermarket checkout. If two
particles i and j meet at a given time and then sep-
arate by more than 2 m, should the same particles
meet up again at a future time this is considered
two separate events.

Considering that: (a) The parameter we choose
to maintain constant during each simulation is the
allowed capacity N , and this capacity is reached at
the beginning of each simulation in a very short
time compared to other processes, and (b) all
agents have the same number of items on their list,
and thus the required time to complete it is similar
on average, the first group of N agents will go to the

checkout points at nearly the same time, generat-
ing high checkout demand and long queues. Follow-
ing this, the new agents will enter slowly as other
agents exit the simulation, and thus the described
behavior will relax. These dynamics lead to more
queuing agents during the first hour of simulation
and fewer during the second hour. We therefore an-
alyze separately the duration of encounters occur-
ring during the first and the second simulation hour
in Fig. 8. The different time scales and the number
of cases in both panels confirm that the first hour
is dominated by particularly long queues waiting to
check out, while in the second hour (Fig. 8B) social
distance events of less than 2 m are dominated by
the shorter process: product selection.

Events in the queuing line are long lasting for two
reasons. First, the particular process at the check-
out desk takes between 2 and 4 min (rather than
the 1 to 1.5 min of the picking process). Second, a
line with nl agents will make the last agents spend
about nl times tco, which for a few agents, namely
nl = 5, could represent 20 min waiting time at a
distance of 1.5 m from another agent.

This problem of high exposure time between
pairs of agents in queuing lines could be avoided
if a slower rate of inflow of agents was adopted at
the start of the process, let us say something above
the maximum average outflow of the system (eight
agents in three minutes, i.e., ∼ 1 agent every 23 s).
We did not adopt this in the simulations because
it would take too long for simulations to reach the
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less than 2 m for more than te min. B: The same measurement as A but for the second hour of the simulations.

desired occupation N . However, it is clear that
the problem noted above at the beginning could be
solved in a real operation by allowing a low flow
rate of agents at opening time (of about twice the
capacity of the checkout). Also, this transient be-
havior would represent a problem only at opening
time, most of the daily operation being as described
in our second simulation hour.

Furthermore, Fig. 8 shows that, as expected,
fewer social distance events occur when the time
thresholds increase. And in all cases, the number
of events seems to grow quadratically with N .

iv Physical distance coefficient

Now, looking for a criterion that determines what
a reasonable allowed capacity in the ideal super-
market would be, we define the physical distance
coefficient (δπ(te)) for the threshold distance of 2
m, as

δπ(te) =
2 Ne(te)

Np
, (12)

where te is the minimum duration of a particular
physical distance event (rij ≤ 2 m), Ne(te) is the
number of these events that last at least te, and
Np is the total number of agents processed by the
system in the same period of time in which Ne is
computed. Factor 2 is needed to take into account
the number of agents in the numerator, since two
agents (i and j) participate in each event.

This coefficient enables us to compare the num-
ber of agents who have participated in physical dis-
tance events of duration greater than te with the
number who have passed through the system. Thus
a value of δπ(te > 2min) = 1 indicates that, on
average, each agent has participated in one event
involving a physical distance of less than 2 m that
lasts at least 2 min. If δπ(te > 2min) < 1, it
would indicate that only a fraction of the agents
have participated in such events.

Having established in section iii that the duration
of events in the first simulation hour is dominated
by the checkout line process, we now concentrate
on looking at the second hour of simulation when
the impact of these lines is very low and stationary.
This situation is representative of the daily opera-
tion of the supermarket; this is shown in Fig. 9,
which displays the physical distance coefficient as
a function of occupation for different event duration
limits te.

First, we note in Fig. 9A that the curve corre-
sponding to te > 1 min grows steeply with N.
This could be related to the fact that the picking
time ranges between 1 min and 1.5 min and that
the products are spaced by 1 m, so if two agents aim
simultaneously for the same product or the first or
second nearest product, they could generate a 2
m physical event lasting at most 1.5 min, and in
particular many events lasting more than 1 minute
would occur. Furthermore, the physical distance
coefficient seems to follow a linear relation with N
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Figure 9: A: Physical distance coefficient as a function of supermarket occupation for the second simulation hour.
B: Close up of previous figure showing details near δπ ∼ 1. Solid lines correspond to the theoretical approach
presented in section v.

for this particular time limit te.

A change of regime can be observed for te > 1.5
min, in which curves are more similar to one an-
other for the different te presented, and they follow
a quadratic relation with N . Because the maxi-
mum picking time is 1.5 min, this is the maximum
possible overlapping time for two agents selecting
neighboring (or the same) products. Longer last-
ing events will arise when more than two agents are
waiting for neighbouring or the same products, as
in the case of products near any of the short lines
for checking out.

The results presented in Fig. 9B could be used
as a guide for determining allowed occupancy. If
based on epidemiological knowledge or criteria, it
was determined that it would be acceptable for all
agents to participate once in a 2-m physical event
lasting at most 1 min, but then the allowed occu-
pation would be very small, N ∼ 10. Alterna-
tively, if events up to 1.5 min were accepted, then
the allowed occupation would be N = 40. In the
case of te = 2 min, the capacity could rise to
N = 70. Also, it could be established that even
for N = 90 the events of the 2-m physical dis-
tance, lasting more than 3 min, would affect only
40% of the processed agents.

Of course, Fig. 9B could be used to find another
allowed occupancy if the criterion considered that,
for example, only 25% of the agents could partici-
pate in the analyzed events.

v Theoretical derivation of δπ

In this subsection we theoretically derive the curves
by interpolating the simulation data shown in
Fig. 9. First we note that there are at least four
sources of physical distance events, displaying in-
creasing duration times:

� a very short time when two walking agents pass
by in an aisle between shelves (∼ 100 s),

� a short time when conflicts appear due to lack
of space (∼ 101 s),

� a longer time when agents are picking products
at a neighboring or the same location (∼ 102

s),

� a very long time when agents are queuing at
neighboring positions in a (long) checkout line
(∼ 103 s).

Because long lines can be avoided by suitable op-
eration parameters, the analysis of δπ in the above
section was performed for the second simulated
hour when checkout lines are kept to a minimum.
Thus the longer process is related to agents select-
ing products at neighboring locations and will dom-
inate the relationship between δπ and occupancy.

The goal is to compute Eq. (12). We can write
the numerator, Ne(te), by taking into account the
different time thresholds displayed in Fig. 9.
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First, we consider the case of events that emerge
from the encounter of two agents during a time slot
given by the mean picking time t̂p = 75 s. We
therefore calculate the average number of pairs of
agents that go for the same product and are less
than 2 m apart as

N2 =
733(

2+mp−1
2

)N (N − 1)

2
, (13)

where mp is the total number of available prod-
ucts,

(
2+mp−1

2

)
is the total number of possible ways

of arranging two indistinguishable agents between
the mp products, and 733 is the subset of these ar-
rangements of two particles at less than 2 m away.
The second factor corresponds to the total number
of possible pairs for a given value of N .

Since the agents do not arrive simultaneously at
their respective products, we compute the proba-
bility that the encounter of two agents lasts longer
than te as

P2(te) =

∫ t̂p
te

dT2∫ t̂p
0

dT2

= 1− (te/t̂p) , (14)

where the denominator is the integral over the pos-
sible arrival times T2 of the second agent, and the
numerator is the integral over the possible arrival
times that meet t̂p > T2 > te. Note that in this case
the time te will be limited to between 0 < te ≤ t̂p;
that is, on average the longest event is limited by
the mean picking time t̂p. We then obtain the num-
ber of events Ne(te > 60 s), counting the number
of time slots t̂p within the observation time T , as

Ne(te > 60 s) = κ60 N2 P2(60 s) T/t̂p . (15)

In our case T = 3600 s and κ60 is a parameter that
will be used to fit the model to the data, and could
be interpreted as a correction considering that si-
multaneous events can occur during the same time
slot t̂p, given that this discretization of time is just
an approximation. Note that t̂p is the average time
that customers spend on the collection of products.
If this time increases, customers will be immobile
for a longer time. For this reason, increasing t̂p de-
creases the number of encounters in a fixed period
T .

Finally, the denominator of the δπ is the number
of processed agents (Np) in the same period of time
T . Considering the picking time at each product,
the number of products, the time needed to walk
between them, and the waiting time at the check-
out desk, a rough estimation of time needed for a
free agent to complete its product list (tr) would
be between 25 and 30 min, as can be seen for low
occupation in Fig. 5A. Thus, the number of pro-
cessed agents per hour could be approximated as
Np ∼ T/tr N ∼ 2 N . However, when occupancy
increases, all internal processes become slower and
as a consequence the effective proportionality con-
stant between Np and N decreases. Considering
the result displayed in Fig. 5B, we approximate the
proportionality constant by 1.5 and thus

Np = 3/2 N. (16)

Therefore, for events lasting more than 60 s we can
write

δπ(te > 60 s) =
2 Ne(te > 60 s)

Np

= κ60
4 N2 P2(60 s) T/t̂p

3 N
∝ N, (17)

Therefore, the functional dependence of δπ(60s) on
N is linear, in accordance with the data shown in
Fig. 9.

We then consider the case of events emerging
from an encounter between three agents. Here, we
calculate events that last longer than t̂p; this can
only occur when three agents go together to the
same product. The corresponding time slot for such
events is 2 t̂p. In this case, the average number of
sets of three agents that go for products that are
less than 2 m apart is

N3 =
mp(

3+mp−1
3

)N (N − 1) (N − 2)

6
, (18)

where the first factor comes from calculating
the probability that three indistinguishable agents
head towards the same product, and the second fac-
tor corresponds to the total number of sets of three
agents. Only one pair of agents will have the chance
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to produce an event whose duration is longer than
t̂p. This pair is made up of the two agents who ar-
rived last, and the probability that the encounter
of these agents lasts longer than te is

P3(te) =

∫ t̂p
te−t̂p

∫ T2

te−t̂p dT3dT2∫ t̂p
0

∫ T2

0
dT3dT2

=
(
2−

(
te/t̂p

))2
, (19)

with t̂p ≤ te ≤ 2 t̂p. Note that the arrival time of
the second agent T2 conditions the possible arrival
time of the third T3. Thus it is possible to calculate
the number of events Ne(te > 90 s) and Ne(te >
120 s) as

Ne(te > 90 s) = κ90 N3 P3(90 s) T/2t̂p , (20)

Ne(te > 120 s) = κ120 N3 P3(120 s) T/2t̂p . (21)

In these cases the δπ for events lasting longer than
90 and 120 s can be expressed as

δπ(te > 90 s) = 2
Ne(te > 90 s)

Np

= κ90
4 N3 P3(90 s) T/2t̂p

3 N

∝ N2, and (22)

δπ(te > 120 s) = 2
Ne(te > 120 s)

Np

= κ120
4 N3 P3(120 s) T/2t̂p

3 N

∝ N2. (23)

Because sets of three particles are considered in
Eq. (18), for 90 s and 120 s δπ grows with N2,
also according to the simulated data displayed in
Fig. 9.

Finally, we repeat our analysis for the case of
events originated by an encounter between four
agents. We focus on events that last longer than
2 t̂p; that is, events where the four agents go to-
gether to the same product. Again, the pair of
agents who arrived last will have the chance to pro-
duce such an event. The average number of sets of
four agents is

N4 =
mp(

4+mp−1
4

)N (N − 1) (N − 2) (N − 3)

24
,

(24)

and the probability that the encounter between the
latest agents lasts longer than te is

P4(te) =

∫ t̂p
te−2t̂p

∫ T2

te−2t̂p

∫ T3

te−2t̂p
dT4dT3dT2∫ t̂p

0

∫ T2

0

∫ T3

0
dT4dT3dT2

=
(
3−

(
te/t̂p

))3
, (25)

with 2 t̂p ≤ te ≤ 3 t̂p. The calculation for the
number of events Ne(te > 180 s) is

Ne(te > 180 s) = κ180 N4 P4(180 s) T/3t̂p , (26)

and the δπ for events lasting longer than 180 s is
expressed as

δπ(te > 180 s) = 2
Ne(te > 180 s)

Np

= κ180
4 N4 P4(180 s) T/3t̂p

3 N

∝ N3. (27)

Also, in this case the functionality dependence of
δπ(180 s) seems to be in accordance with simulation
results (Fig. 9). The scale laws for δπ(te) are deter-
mined by the dominant encounter of agents; that
is, the encounter that involves the lowest number of
agents (which is the most probable event) and lasts
longer than te. In fact, for the regime of te > 90
s and te > 120 s, we find the same scaling law,
and this is because in these regimes the dominant
encounter is that of three agents.

We calibrate these simulation data with
Eqs. (17), (22), (23), and (27) by fitting the values
of κ, and hence κ60 = 1.3, κ90 = 1.7, κ120 = 2.4,
κ180 = 1.5. The solid lines shown in Fig. 9 stand
for these results. The values obtained for κ are
reasonable in terms of interpretation of the fitting
parameter proposed above, and indicate that our
analysis is correct in terms of computing and the
approximated value for the δπ coefficient indepen-
dently of the simulations, at least for the simple
and idealized system studied.
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V Conclusions

In this work we investigate and characterize so-
cial distancing in an everyday pedestrian system by
simulating the dynamics of an ideal supermarket.
Many sources of complexity were successfully taken
into account with a multilevel model, which enables
us to simulate not only translation but also more
complex behaviors such as waiting times when se-
lecting particular products and queuing at checkout
points.

The main process that keeps pedestrians close
to one another is the queuing lines for checkout.
Therefore advice for the operation would be to keep
these lines as short as possible either by increasing
the number of checkout points or by decreasing oc-
cupancy.

At values greater than 2 m, different operational
models display similar macroscopic observables re-
garding social distance, indicating that the results
are robust with respect to microscopic collision
avoidance resolution, and also suggesting that the
simulated paths of the particles are more influenced
by the geometry, shopping list, and time-consuming
process than by the particular avoidance mecha-
nism. However, first-order models such as the CPM
presented in Ref. [10] and section II.iii seem more
suitable for simulation of highly populated scenar-
ios with complex behavioral agents.

Taking a physical distance threshold of 2 m, the
probabilities and duration of such events are stud-
ied. The physical distance coefficient (δπ) is defined
as an indicator of the fraction of the population
passing through the system that is involved in one
or many of these events lasting at least a certain
time threshold te. We put forward a theoretical
analysis that satisfactorily fits the simulation data.
It is important to note that applying this analy-
sis requires an estimate of the number of agents
processed per unit of time. In this work we use a
relationship found from numerical simulations that
can in the future be calibrated by empirical data or
new models.

The same analysis can be carried out for a dif-
ferent set of parameters and for other pedestrian
facilities such as other specific supermarkets or dif-
ferent systems (transport, entertainment, etc.). Of
course, existing facilities can be monitored with
measurement methods [6] providing high-quality
trajectory data. This kind of data could also be

interpreted in terms of the analysis performed in
the present work.

The analysis presented takes into account only
the duration of a given physical distance. As stated
in the introduction, this is only a partial aspect of
the contagion problem, and thus it must be inte-
grated with other disciplines. For example, if a
physical distance, a time threshold, and the frac-
tion of the population that could be exposed to
these conditions were determined, then maximum
occupancy could be estimated using the observables
defined in this work.
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