[1] G M Whitesides, The origins and the future of microfluidics, Nature 442, 368 (2006).
https://doi.org/10.1038/nature05058

[2] N Convery, N Gadegaard, 30 years of microfluidics, Micro Nano Eng. 2, 76 (2019).
https://doi.org/10.1016/j.mne.2019.01.003

[3] A W Martinez, S T Phillips, B J Wiley, M Gupta, G M Whitesides, Flash: A rapid method for prototyping paper-based microfluidic devices, Lab. Chip 8, 2146 (2008).
https://doi.org/10.1039/b811135a

[4] F Ghaderinezhad, R Amin, M Temirel, B Yenilmez, A Wentworth, S Tasoglu, High-throughput rapid-prototyping of low-cost paper-based microfluidics, Sci. Rep. 7, 3553 (2017).
https://doi.org/10.1038/s41598-017-02931-6

[5] A Nilghaz, D R Ballerini, W Shen, Exploration of microfluidic devices based on multi-filament threads and textiles: A review, Biomicrofluidics 7, 51501 (2013).
https://doi.org/10.1063/1.4820413

[6] M Lismont, N Vandewalle, J Joris, L Dreesen, Fiber based optofluidic biosensors, Appl. Phys. Lett. 105, 133701 (2014).
https://doi.org/10.1063/1.4896767

[7] F Weyer, A Duchesne, N Vandewalle, Switching behavior of droplets crossing nodes on a fiber network, Sci. Rep. 7, 13309 (2017).
https://doi.org/10.1038/s41598-017-13009-8

[8] F Weyer, M Ben Said, J Hotzer, M Berghoff, L Dreesen, B Nestler, N Vandewalle, Compound droplets on fibers, Langmuir 31, 7799 (2015).
https://doi.org/10.1021/acs.langmuir.5b01391

[9] E J Walsh, A Feuerborn, J H R Wheeler, A Na Tan, W M Durham, K R Foster, P R Cook, Microfluidics with fluid walls, Nat. Commun. 8, 816 (2017).
https://doi.org/10.1038/s41467-017-00846-4

[10] A Marmur, Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification, Soft Matter 8, 6867 (2012).
https://doi.org/10.1039/c2sm25443c

[11] A M Cazabat, M A Cohen Stuart, Dynamics of wetting: Effects of surface roughness, J. Phys. Chem. 90, 5845 (1986).
https://doi.org/10.1021/j100280a075

[12] B Darbois Texier, P Laurent, S Stoukatch, S Dorbolo, Wicking through a confined mi- cropillar array, Microfluid. Nanofluid. 20, 53 (2016).
https://doi.org/10.1007/s10404-016-1724-3

[13] D Beilharz, PhD Thesis: Liquids guided by texture, ESPCI, Paris (2018).

[14] D Quéré, P-G de Gennes, F Brochard-Wyart, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, New York (2013).
https://doi.org/10.1007/978-0-387-21656-0

[15] C G L Furmidge, Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention, J. Colloid Interf. Sci. 17, 309 (1962).
https://doi.org/10.1016/0095-8522(62)90011-9

[16] M Miwa, A Nakajima, A Fujishima, K Hashimoto, T Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces, Langmuir 16, 5754 (2000).
https://doi.org/10.1021/la991660o

[17] M F Mei, B M Yu, L Luo, J C Cai, A model for the contact angle of liquid droplets on rough surfaces, Chinese Phys. Lett. 27, 076802 (2010).
https://doi.org/10.1088/0256-307X/27/7/076802

[18] H Y Kim, H J Lee, B H Kang, Sliding of liquid drops down an inclined solid surface, J. Coll. Interf. Sci. 247, 372 (2002).
https://doi.org/10.1006/jcis.2001.8156

[19] N Le Grand, A Daerr, L Limat, Shape and mo-tion of drops sliding down an inclined plane, J. Fluid Mech. 541, 293 (2005).
https://doi.org/10.1017/S0022112005006105

[20] J Snoeijer, E Rio, N Le Grand, L Limat, Self-similar flow and contact line geometry at the rear of cornered drops, Phys. Fluids 17, 072101 (2005).
https://doi.org/10.1063/1.1946607

[21] U Thiele, K Neuffer, M Bestehorn, Y Pomeau, M G Velarde, Sliding drops on an inclined plane, Colloids Surf. A 206, 87 (2002).
https://doi.org/10.1016/S0927-7757(02)00082-1

[22] S P Thampi, R Adhikari, R Govindarajan, Do liquid drops roll or slide on inclined surfaces?, Langmuir 29, 3339 (2013).
https://doi.org/10.1021/la3050658

[23] M Kim, E Lee, D H Kim, R Kwak, Decoupled rolling, sliding and sticking of a viscoplastic drop on a superhydrophobic surface, J. Fluid Mech. 908, A41 (2020).
https://doi.org/10.1017/jfm.2020.895

[24] J P Dupont, D Legendre, Numerical simulation of static and sliding drop with contact angle hysteresis, J. Comput. Phys. 229, 2453 (2000).
https://doi.org/10.1016/j.jcp.2009.07.034

[25] G Karapetsas, N T Chamakos, A G Papathanasiou, Efficient modelling of droplet dynamics on complex surfaces, J. Phys. Condens. Mat. 28, 085101 (2016).
https://doi.org/10.1088/0953-8984/28/8/085101

[26] S Couvreur, A Daerr, The role of wetting heterogeneities in the meandering instability of a partial wetting rivulet, Europhys. Lett. 2999, 24004 (2012).
https://doi.org/10.1209/0295-5075/99/24004

[27] A Lafuma, D Quéré, Superhydrophobic states, Nat. Mater. 2, 457 (2003).
https://doi.org/10.1038/nmat924

[28] P Bourrianne, PhD Thesis: Non-mouillant et température: Application aux revêtements culinaires, ESPCI, Paris VI (2016).
https://archivesic.ccsd.cnrs.fr/THESES-UPMC/tel-02023376v1

[29] T Onda, S Shibuichi, N Satoh, K Tsui, Superwater-repellent fractal surfaces, Langmuir 12, 2125 (1996).
https://doi.org/10.1021/la950418o

[30] P Brunet, J Eggers, R D Deegan, Vibration-induced climbing of drops, Phys. Rev. Lett. 99, 144501 (2007).
https://doi.org/10.1103/PhysRevLett.99.144501

[31] P Sartori, D Quagliati, S Varagnolo, M Pierno, G Mistura, F Magaletti, C M Casciola, Drop motion induced by vertical vibrations, New J. Phys. 17, 113017 (2007).
https://doi.org/10.1088/1367-2630/17/11/113017

[32] S Varagnolo, D Ferraro, P Fantinel, M Pierno, G Mistura, G Amati, L Biferale, M Sbragaglia, Stick-slip sliding of water drops on chemically heterogeneous surfaces, Phys. Rev. Lett. 111, 066101 (2013).
https://doi.org/10.1103/PhysRevLett.111.066101

[33] B Chang, Q Zhou, R H A Ras, A Shah, Z Wu, K Hjort, Sliding droplets on hydrophilic/superhydrophobic patterned surfaces for liquid deposition, Appl. Phys. Lett. 108, 154102 (2016).
https://doi.org/10.1063/1.4947008

[34] R D Deegan, O Bakajin, T F Dupont, G Huber, S R Nagel, T A Witten, Capillary flow as the cause of ring stains from dried liquid drops, Nature 389, 827 (1997).
https://doi.org/10.1038/39827

[35] J Vermant, When shape matters, Nature 476, 286 (2011).
https://doi.org/10.1038/476286a

[36] Saint-Gobain. Float standard glass for building purpose.
https://befr.saint-gobain-building-glass.com/fr-BE/satinovo-mate

[37] D Quéré, Wetting and roughness, Annu. Rev. Mater. Res. 38, 71 (2008).
https://doi.org/10.1146/annurev.matsci.38.060407.132434

[38] L H Tanner, The spreading of silicone oil drops on horizontal surfaces, J. Phys. D: Appl. Phys. 12, 1473 (1979).
https://doi.org/10.1088/0022-3727/12/9/009

[39] M Maleki, M Reyssat, F Restagno, D Quéré, C Clanet, Landau-Levich menisci, J. Colloid Interf. Sci. 354, 359 (2011).
https://doi.org/10.1016/j.jcis.2010.07.069

[40] Y Jiang, M R Khadilkar, M H Al-Dahhan, M P Dudukovic, Two-phase flow distribution in 2D trickle-bed reactors, Chem. Eng. Sci. 54, 2409 (1999).
https://doi.org/10.1016/S0009-2509(98)00360-1

[41] B G Abdallah, A Ros, Surface coatings for microfluidic-based biomedical devices, In: Microfluidic devices for biomedical applications, Eds. X Li, Y Zhou, Pag. 63, Woodhead Publishing, Cambridge (2013).
https://doi.org/10.1533/9780857097040.1.63