[1] V A Lisovsky, S D Yakovin, Scaling law for a low-pressure gas breakdown in a homogeneous DC electric field, JETP Lett. 72, 34 (2000).
https://doi.org/10.1134/1.1312005

[2] H Luo, X Wang, Y Fu, S Yang, X Zou, Similarity of gas discharge in low-pressure argon gaps between two plane-parallel electrodes, High Voltage 1, 86 (2016).
https://doi.org/10.1049/hve.2016.0017

[3] J R Lucas, Breakdown of Gaseous Insulation, In: High Voltage Engineering, Pag. 1-21, Katson Books, Sri Lanka (2001).
https://www.academia.edu/38036425/High_Voltage_Engineering

[4] B T Chiad, T L Al-zubaidi, M K Khalaf, A I Khudiar, Characterization of low pressure plasma-DC glow discharges (Ar, SF6 and SF6/He) for Si etching. Indian J. Pure Ap. Phy. 48, 723 (2010).
http://nopr.niscair.res.in/handle/123456789/10393

[5] J T Gudmundsson, A Hecimovic, Foundations of DC plasma sources, Plasma Sources Sci. Tech. 26, 123001 (2017).
https://doi.org/10.1088/1361-6595/aa940d

[6] A A Garamoon, A Samir, F F Elakshar, E F Kotp, Electrical characteristics of a DC glow discharge, Plasma Sources Sci. Tech. 12, 417 (2003).
https://doi.org/10.1088/0963-0252/12/3/317

[7] A M Loveless, A L Garner, A universal theory for a gas breakdown from microscale to the classical Paschen law, Phys. Plasmas 24, 113522 (2017).
https://doi.org/10.1063/1.5004654

[8] P Mathew, J George, T S Mathews, P J Kurian, Experimental verification of modified Paschen's law in DC glow discharge argon plasma, AIP Adv. 9, 025215 (2019).
https://doi.org/10.1063/1.5086246

[9] M Nurujjaman, A N S Iyengar, Realization of SOC behaviour in a DC glow discharge plasma, Phys Lett. A 360, 717 (2007).
https://doi.org/10.1016/j.physleta.2006.09.005

[10] S A Kalinin, A V Meshchanov, A I Shishpanov, Y Z Ionikh, Dynamics of breakdown in a low-pressure argon-mercury mixture in a long discharge tube, Plasma Phys. Rep.44, 298 (2018).
https://doi.org/10.1134/S1063780X18030054

[11] K T A L Burm, Calculation of the Townsend discharge coefficients and the Paschen curve coefficients, Contrib. Plasm. Phys. 47, 177 (2007).
https://doi.org/10.1002/ctpp.200710025

[12] L Sirghi, K Ohef, G Popa, Interactions between ionization waves and potential structure formed at a constriction of the DC He positive column, J. Phys. D. Appl. Phys. 30, 2431 (1997).
https://doi.org/10.1088/0022-3727/30/17/009

[13] S A Wissel, A Zwicker, J Ross, S Gershman, The use of DC glow discharges as undergraduate educational tools, Am. J. Phys. 81, 663 (2013).
https://doi.org/10.1119/1.4811435

[14] P F Little, A V Engel, The hollow-cathode effect and theory of glow discharge, Proc. R. Soc. Lond. A 224, 209 (2016).
https://doi.org/10.1098/rspa.1954.0152

[15] V A Lisovskiy, S D Yakovin, V D Yegorenkov, Low-pressure gas breakdown in uniform dc electric field, J. Phys. D. Appl. Phys 33, 2722 (2000).
https://doi.org/10.1088/0022-3727/33/21/310

[16] X Wang, Y Fu, X Zou, S Yang, H Luo, Effect of distribution of electric field on low-pressure gas breakdown, Phys. Plasmas 24, 023508 (2017).
https://doi.org/10.1063/1.4976848

[17] M Schmidt, H Conrads, Plasma generation and plasma sources, Plasma Sources Sci. Technol. 9, 441 (2000).
https://doi.org/10.1088/0963-0252/9/4/301

[18] Y Hoshi, H Yoshida, Examination of laser-triggered discharge using a virtual gas model and the similarity of its Paschen curve with those of inert gases, J. Appl. Phys. 106, 27 (2009).
https://doi.org/10.1063/1.3223536

[19] Y Fu, H Luo, X Zou, X Wang, Research on similarity law of glow discharge in argon at low pressure by numerical simulation, IEEE T. Plasma Sci. 42, 1544 (2014).
https://doi.org/10.1109/TPS.2014.2319106

[20] V A Lisovskiy, V A Koval, V D Yegorenkov, DC breakdown of low pressure gas in long tubes, Phys. Lett. A 375 , 1986 (2011).
https://doi.org/10.1016/j.physleta.2011.03.035

[21] G A Mesyats, On the similarity law in picosecond gas discharges, JETP Lett. 83, 21 (2006).
https://doi.org/10.1134/S002136400601005X

[22] J Franzke, The micro-discharge family (dark, corona, and glow-discharge) for analytical applications realized by dielectric barriers, Anal. Bioanal. Chem. 395, 549 (2009).
https://doi.org/10.1007/s00216-009-2799-4

[23] L D Tsendin, Nonlocal electron kinetics in gas-discharge plasma, Uspekhi Fiz. Nauk180, 139 (2010).
https://doi.org/10.3367/UFNr.0180.201002b.0139

[24] J Nahorny et al., Experimental and theoretical investigation of a n2-02 DC flowing glow discharge, J. Phys. D. Appl. Phys. 28, 738 (1995).
https://doi.org/10.1088/0022-3727/28/4/017

[25] J Sernicki, Some practical data on the first Townsend coefficient of organic vapour in avalanche counters, Nucl. Instrum. Meth. A 399, 347 (1997).
https://doi.org/10.1016/S0168-9002(97)00949-2

[26] D N Polyakov, V V Shumova, L M Vasilyak, Positive column of a glow discharge in neon with charged dust grains, Plasma Phys. Rep. 43, 397 (2017).
https://doi.org/10.1134/S1063780X17030096

[27] S O Macheret et al., Shock wave propagation and dispersion in glow discharge plasmas, Phys. Fluids 13, 2693 (2001).
https://doi.org/10.1063/1.1388204

[28] A Bogaerts, E Neyts, R Gijbels, J van der Mullen, Gas discharge plasmas and their applications, Spectrochim. Acta B 57, 609 (2002).
https://doi.org/10.1016/S0584-8547(01)00406-2

[29] F Yang-Yang, L Hai-Yun, Z Xiao-Bing, W Xin-Xin, Influence of forbidden processes on similarity law in argon glow discharge at low pressure, Chinese Phys. Lett. 31, 075201 (2014).
https://doi.org/10.1088/0256-307X/31/7/075201

[30] L Papageorgiou, A C Metaxas, G E Georghiou, Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena, J. Phys. D Appl. Phys. 44, 045203 (2011).
https://doi.org/10.1088/0022-3727/44/4/045203

[31] A Wolf, J B Swift, H L Swinney, J A Vastano, Determining Lyapunov exponents from a time series, Phys. D: Nonlinear Phenom. 16, 285 (1985).
https://doi.org/10.1016/0167-2789(85)90011-9

[32] V O Papanyan, Y I Grigoryan, Deterministic onset of chaos in a gas discharge, Phys. Lett. A 164, 43 (1992).
https://doi.org/10.1016/0375-9601(92)90903-Y

[33] G Brunner, Townsend coefficients of gases in avalanche counters, Nucl. Instrum. Methods 154, 159 (1978).
https://doi.org/10.1016/0029-554X(78)90673-0

[34] B M Smirnov, Modeling gas discharge plasma, Phys. Usp. 52, 559 (2009).
https://doi.org/10.3367/UFNe.0179.200906e.0591

[35] P F Kurbatov, The physical nature of the phenomenon of positive column plasma constriction in low-pressure noble gas direct current discharges, Phys. Plasmas 21, 023508, (2014).
https://doi.org/10.1063/1.4866016

[36] Q Ye, A simple analytical method of gas discharge based on logistic model, IEEE Trans. Plasma Sci. 47, 1413 (2019).
https://doi.org/10.1109/TPS.2018.2889796

[37] L Conde, L. León, Multiple double layers in a glow discharge, Phys. Plasmas 1, 2441 (1994).
https://doi.org/10.1063/1.870572

[38] U Kogelschatz, Dielectric-barrier discharges: Their history, discharge physics, and industrial applications, Plasma Chem. Plasma Process. 23, 1 (2003).
https://doi.org/10.1023/A:1022470901385

[39] R Fitzpatrick, Plasma physics: An introduction, CRC Press, Boca Raton (2014).
https://doi.org/10.1201/b17263

[40] L D Tsendin, Electron kinetics in non-uniform glow discharge plasmas, Plasma Sources Sci. Technol. \textbf{4}, 200 (1995).
https://doi.org/10.1088/0963-0252/4/2/004

[41] M N Shneider, M S Mokrov, G M Milikh, Dynamic contraction of the positive column of a self-sustained glow discharge in molecular gas, Phys. Plasmas 19, 033512 (2012).
https://doi.org/10.1063/1.3694913

[42] X P Lu, M Laroussi, Electron density and temperature measurement of an atmospheric pressure plasma by millimeter wave interferometer, Appl. Phys. Lett. 92, 051501 (2008).
https://doi.org/10.1063/1.2840194

[43] R A Bosch, R L Merlino, Sudden jumps, hysteresis, and negative resistance in an argon plasma discharge. I. Discharges with no magnetic field, Beit. Plasmaphys. Cont. 26, 1 (1986)
https://doi.org/10.1002/ctpp.19860260102

[44] W Yun, L Yinghong, J Min, S Huimin, S Changbing, P Yikang, Experimental investigation into characteristics of plasma aerodynamic actuation generated by dielectric barrier discharge, Chinese J. Aeronaut. 23, 39 (2010).
https://doi.org/10.1016/S1000-9361(09)60185-0

[45] R Morrow, The theory of the positive glow corona, J. Phys. D. Appl. Phys. 30, 3099 (1997).
https://doi.org/10.1088/0022-3727/30/22/008

[46] C M Ticos, E Rosa, W B Pardo, J A Walkenstein, M Monti, Experimental real-time phase synchronization of a paced chaotic plasma discharge, Phys. Rev. Lett. 85, 2929 (2000).
https://doi.org/10.1103/PhysRevLett.85.2929

[47] Y Fu, P Zhang, J Krek, J P Verboncoeur, Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions, Appl. Phys. Lett. 114, 014102 (2019).
https://doi.org/10.1063/1.5077015

[48] Y Fu, J P Verboncoeur, On the similarities of low-temperature plasma discharges, IEEE Trans. Plasma Sci. 47, 1994 (2018).
https://doi.org/10.1109/TPS.2018.2886444

[49] A L Garner, G Meng, Y Fu, A M Loveless, R S Brayfield, A M Darr, Transitions between electron emission and gas breakdown mechanisms across length and pressure scales, J. Appl. Phys. 128, 210903 (2020).
https://doi.org/10.1063/5.0030220