[1] R M Donlan, J W Costerton, Biofilms: Survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev. 15, 167 (2002).
https://doi.org/10.1128/CMR.15.2.167-193.2002

[2] L E Chavez de Paz, A Resin, K A Howard, D S Sutherland, P L Wejse, Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms, Appl. Environ. Microbiol. 77, 3892 (2011).
https://doi.org/10.1128/AEM.02941-10

[3] H Anwar, M K Dasgupta, J W Costerton, Testing the susceptibility of bacteria in biofilms to antibacterial agents, Antimicrob. Agents Ch. 34, 2043 (1990).
https://doi.org/10.1128/AAC.34.11.2043

[4] R M Donlan, Biofilms and device-associated infections, Emerg. Infect. Dis. 7, 277 (2001).
https://doi.org/10.3201/eid0702.010226

[5] J L Del Pozo, M S Rouse, R Patel, Bioelectric effect and bacterial biofilms. A systematic review, Int. J. Artif. Organs 31, 786 (2008).
https://doi.org/10.1177/039139880803100906

[6] K Lewis, Riddle of biofilm resistance, Antimicrob. Agents Ch. 45, 999 (2001).
https://doi.org/10.1128/AAC.45.4.999-1007.2001

[7] V Vishwakarma, Impact of environmental biofilms: Industrial components and its remediation, J. Basic Microbiol. 60, 198 (2020).
https://doi.org/10.1002/j obm.201900569

[8] S H Abidi, S K Sherwani, T R Siddiqui, A Bashir, S U Kazmi, Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan, BMC Ophthalmol. 13, 57 (2013).
https://doi.org/10.1186/1471-2415-13-57

[9] J L Del Pozo, R Patel, The challenge of treating biofilm-associated bacterial infections, Clin. Pharmacol. Ther. 82, 204 (2007).
https://doi.org/10.1038/sj.clpt.6100247

[10] S A Blenkinsopp, A E Khoury, J W Costerton, Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms, Appl. Environ. Microbiol. 58, 3770 (1992).
https://doi.org/10.1128/aem.58.11.3770-3773.1992

[11] E L Sandvik, B R McLeod, A E Parker, P S Stewart, Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid, PLoS ONE 8, e55118 (2013).
https://doi.org/10.1371/journal.pone.0055118

[12] Y Kim, S Subramanian, K Gerasopoulos, et al., Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect, Npj Biofilms Microbiomes 15016, (2015).
https://doi.org/10.1038/npjbiofilms.2015.16

[13] A J van der Borden, H van der Werf, H C van der Mei, H J Busscher, Electric current-induced detachment of Staphylococcus epidermidis biofilms from surgical stainless steel, Appl. Environ. Microbiol. 70, 6871 (2004).
https://doi.org/10.1128/AEM.70.11.6871-6874.2004

[14] M E Shirtliff, A Bargmeyer, A K Camper, Assessment of the ability of the bioelectric effect to eliminate mixed-species biofilms, Appl. En- viron. Microbiol. 71, 6379 (2005).
https://doi.org/10.1128/AEM.71.10.6379-6382.2005

[15] J L Del Pozo, M S Rouse, J N Mandrekar, J M Steckelberg, R Patel, The electricidal effect: Reduction of Staphylococcus and Pseudomonas biofilms by prolonged exposure to low-intensity electrical current, Antimicrob. Agents Ch. 53, 41 (2009).
https://doi.org/10.1128/AAC.00680-08

[16] M Ruiz-Ruigomez, J Badiola, S Schmidt-Malan, et al., Direct electrical current reduces bacterial and yeast biofilm formation, Int. J. Bacteriol. 9727810, 1 (2016).
https://doi.org/10.1155/2016/9727810

[17] C Rabinovitch, P S Stewart, Removal and inactivation of Staphylococcus epidermidis biofilms by electrolysis, App. Environ. Microbiol. 72, 6364 (2006).
https://doi.org/10.1128/AEM.00442-06

[18] D Zituni, H Schütt-Gerowitt, M Kopp, et al., The growth of Staphylococcus aureus and Escherichia coli in low-direct current electric fields, Int. J. Oral Sci. 6, 7 (2014).
https://doi.org/10.1038/ijos.2013.64

[19] P P Mahamuni-Badiger, P M Patil, et al., Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles, Mater. Sci. Eng.: C. 108, 110319 (2020).
https://doi.org/10.1016/j.msec.2019.110319

[20] V Iribarnegaray, N Navarro, L Robino, P Zunino, J Morales, P Scavone, Magnesium- doped zinc oxide nanoparticles alter biofilm formation of Proteus mirabilis, Nanomedicine-UK 14, 1551 (2019).
https://doi.org/10.2217/nnm-2018-0420

[21] D M Berube, E M Searson, T S Morton, C L Cummings, Project on emerging nanotechnologies - Consumer product inventory evaluated, Nanotech. Law and Bus. 7, 152 (2010).

[22] F Piccinno, F Gottschalk, S Seeger, B Nowack, Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world, J. Nanoparticle Res. 14, 1109 (2012).
https://doi.org/10.1007/s11051-012-1109-9

[23] K Ikuma, A W Decho, B Lau, When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles, Front. Microbiol. 6, 591 (2015).
https://doi.org/10.3389/fmicb.2015.00591

[24] H Mu, X Zheng, Y Chen, H Chen, K. Liu, Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment, Environ. Sci. Technol. 46, 5997 (2012).
https://doi.org/10.1021/es300616a

[25] A Besinis, T De Peralta, R Handy, The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Strep- tococcus mutans using a suite of bioassays, Nanotoxicology 8, 1 (2014).
https://doi.org/10.3109/17435390.2012.742935

[26] A Kubacka, M Diez, D Rojo, et al., Understanding the antimicrobial mechanism of TiO2 -based nanocomposite films in a pathogenic bacterium, Sci. Rep. 4, 4134 (2014).
https://doi.org/10.1038/srep04134

[27] Y Qin, X Guo, F Tou, H Pan, J Feng, J Xu, B Chen, M Liu, Y Yang, Cytotoxicity of TiO2 nanoparticles toward Escherichia coli in an aquatic environment: Effects of nanoparticle structural oxygen deficiency and aqueous salinity, Environ. Sci. Nano. 4, 1178 (2017).

[28] P Westerhoff, G Song, K Hristovski, M A Kiser, Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials, J. Environ. Monitor 13, 1195 (2011).
https://doi.org/10.1039/c1em10017c

[29] M A Maurer-Jones, I L Gunsolus, B M Meyer, C J Christenson, C L Haynes, Impact of TiO2 nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis, Anal. Chem. 85, 5810 (2013).
https://doi.org/10.1021/ac400486u

[30] L Shkodenko, I Kassirov, E Koshel, Metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations, Microorganisms 8, 1545 (2020).
https://doi.org/10.3390/microorganisms8101545

[31] S A Zaki, M M Eltarahony, D A Abd-El-Haleem, Disinfection of water and wastewater by biosynthesized magnetite and zerovalent iron nanoparticles via NAP-NAR enzymes of Proteus mirabilis 10B, Environ. Sci. Pollut. Res. 26, 23661 (2019).
https://doi.org/10.1007/s11356-019-05479-2

[32] K S Khashan, G M Sulaiman, F A Abdulameer, S Albukhaty, M A Ibrahem, T Al-Muhimeed, A A AlObaid, Antibacterial activity of TiO2 nanoparticles prepared by one-step laser ablation in liquid, App. Sci. 11, 4623 (2021).
https://doi.org/10.3390/app11104623

[33] M Eltarahony, A Ibrahim, H El-Shall, E Ibrahim, F Althobaiti, E Fayad, Antibacterial, antifungal and antibiofilm activities of silver nanoparticles supported by crude bioactive metabolites of bionanofactories isolated from Lake Mariout, Molecules 26, 3027 (2021).
https://doi.org/10.3390/molecules26103027

[34] C L de Dicastillo, M G Correa, F B Martı́nez, C Streitt, M J Galotto, Antimicrobial effect of titanium dioxide nanoparticles, In: Antimicrobial resistance - A one health perspective, Eds. M Mares, S H E Lim, K S Lai, R-T Cristina, Pag. 95, IntechOpen, London (2020).
https://doi.org/10.5772/intechopen.90891

[35] S Bagheri, K Shameli, S Abd Hamid, Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method, J. Chem. 848205, 1 (2013).
https://doi.org/10.1155/2013/848205

[36] P Anandgaonker, G Kulkarni, S Gaikwad, A Rajbhoj, Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application, Arab. J. Chem. 12, 1815 (2019).
https://doi.org/10.1016/j.arabjc.2014.12.015

[37] A Karunanidhi, E Ghaznavi-Rad, et al., Antibacterial and antibiofilm activities of nonpolar extracts of Allium stipitatum Regel. against multidrug resistant bacteria, Biomed. Res. Int. 11, 9845075 (2018).
https://doi.org/10.1155/2018/9845075

[38] J Rajkumari, S Borkotoky, A Murali, S Busi, Anti-quorum sensing activity of Syzygium jambos (L.) Alston against Pseudomonas aeruginosa PAO1 and identification of its bioactive components, S. Afr. J. Bot. 118, 151 (2018).
https://doi.org/10.1016/j.sajb.2018.07.004

[39] H K Maehre, L Dalheim, G K Edvinsen, E O Elvevoll, I J Jensen, Protein determination - method matters, Foods 7, 5 (2018).
https://doi.org/10.3390/foods7010005

[40] C J L dos Ramos Almeida, S M da Silva, et al., Biofilm formation in Bacillus cereus, B. licheniformis and B. pumilus: An alternative for survival in impacted environments, Int. J. Sci. 6, 73 (2017).
https://doi.org/10.18483/ijSci.1422

[41] O Antonoglou, K Giannousi, et al., Elucidation of one step synthesis of PEGylated CuFe bimetallic nanoparticles. Antimicrobial activity of CuFe@PEG vs Cu@PEG, J. Inorg. Biochem. 177, 159 (2017).
https://doi.org/10.1016/j.jinorgbio.2017.09.014

[42] M Alavi, N Karimi, Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag-TiO2, TiO2-Ag, Ag-Cu and Cu-Ag nanocom- posites against multi-drug-resistant bacteria, Artif. Cell Nanomed. B. 46, S399 (2018).
https://doi.org/10.1080/21691401.2018.1496923

[43] R SharmilaDevi, R Venckatesh, RajeshwariSivaraj, Synthesis of titanium dioxide nanoparticles by sol-gel technique, Int. J. Innovative Res. Sci. Eng. Tech. 3, 15206 (2014).
https://doi.org/10.15680/IJIRSET.2014.0308020

[44] A León, P Reuquen, C Garı́n, R Segura, P Vargas, P Zapata, P A Orihuela, FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol, Appl. Sci. 7, 49 (2017).
https://doi.org/10.3390/app7010049

[45] V R Krishnamurthi, A Rogers, J Peifer, I I Niyonshuti, J Chen, Y Wang, Microampere electric current causes bacterial membrane damage and two-way leakage in a short period of time, Appl. Environ. Microbiol. 86, e01015 (2020).
https://doi.org/10.1128/AEM.01015-20

[46] Q Luo, H Wang, X Zhang, Y Qian, Effect of rect electric current on the cell surface properties of phenol-degrading bacteria, Appl. Environ. Microbiol. 71, 423 (2005).
https://doi.org/10.1128/AEM.71.1.423-427.2005

[47] A M Horst, A C Neal, R E Mielke, P R Sislian, W H Suh, L Mädler, G D Stucky, P A Holden, Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa, Appl. Environ. Microbiol. 76, 7292 (2010).
https://doi.org/10.1128/AEM.00324-10

[48] A Poortinga, J Smit, H van der Mei, H Busscher, Electric field induced desorption of bacteria from a conditioning film covered substratum, Biotechnol. Bioeng. 76, 395 (2001).
https://doi.org/10.1002/bit.10129

[49] A J van der Borden, H van der Mei, H J Busscher, Electric block current induced detachment from surgical stainless steel and decreased viability of Staphylococcus epidermidis, Biomaterials 26, 6731 (2005).
https://doi.org/10.1016/j.biomaterials.2004.04.052

[50] J Jass, J W Costerton, H M Lappin-Scott, The effect of electrical currents and tobramycin on Pseudomonas aeruginosa biofilms, J. Ind. Microbiol. 15, 234 (1995).
https://doi.org/10.1007/BF01569830

[51] A Valle, E Zanardini, P Abbruscato, P Ar- genzio, G Lustrato, G Ranalli, C Sorlini, Effects of low electric current (LEC) treatment on pure bacterial cultures, J. Appl. Microbiol. 103, 1376 (2007).
https://doi.org/10.1111/j.1365-2672.2007.03374.x

[52] C P Davis, S Weinberg, M D Anderson, G M Rao, M M Warren, Effects of microamperage, medium, and bacterial concentration on iontophoretic killing of bacteria in fluid, Antimicrob. Agents Ch. 33, 442 (1989).
https://doi.org/10.1128/AAC.33.4.442

[53] A T Poortinga, R Bos, H J Busscher, Controlled electrophoretic deposition of bacteria to surfaces for the design of biofilms, Biotechnol. Bioeng. 67, 117 (2000).
https://doi.org/10.1002/(SICI)1097-0290(20000105)67:1<117::AID-BIT14>3.0.CO;2-6

[54] B A Jucker, H Harms, A J Zehnder, Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon, J. Bacteriol. 178, 5472 (1996).
https://doi.org/10.1128/jb.178.18.5472-5479.1996

[55] M Ueshima, S Tanaka, S Nakamura, K Yamashita, Manipulation of bacterial adhesion and proliferation by surface charges of electrically polarized hydroxyapatite, J. Biomed. Mater. Res. 60, 578 (2002).
https://doi.org/10.1002/jbm.10113

[56] M R Asadi, G Torkaman, Bacterial inhibition by electrical stimulation, Adv. Wound Care 3, 91 (2014).
https://doi.org/10.1089/wound.2012.0410

[57] F Y Ahmed, U F Aly, R M A El-Baky, N G F M Waly, Effect of titanium dioxide nanoparticles on the expression of efflux pump and quorum-sensing genes in MDR Pseudomonas aeruginosa isolates, Antibiotics 10, 625 (2021).
https://doi.org/10.3390/antibiotics10060625

[58] A Krasowska, K Sigler, How microorganisms use hydrophobicity and what does this mean for human needs?, Front. Cell. Infect. Microbiol. 19, 112 (2014).
https://doi.org/10.3389/fcimb.2014.00112

[59] J Hu, J Lin, Y Zhang, Z Lin, Z Qiao, Z Liu, W Yang, X Liu, M Dong, Z Guo, A new anti-biofilm strategy of enabling arbitrary surfaces of materials and devices with robust bacterial anti-adhesion via a spraying modified micro-sphere method, J. Mater. Chem. A. 7, 26039 (2019).
https://doi.org/10.1039/C9TA07236E

[60] Y Mu, H Zeng, W Chen, Quercetin inhibits biofilm formation by decreasing the production of EPS and altering the composition of EPS in Staphylococcus epidermidis, Front. Microbiol. 12, 251 (2021).
https://doi.org/10.3389/fmicb.2021.631058

[61] R Shah, S Kaewgun, B Lee, T Tzeng, The antibacterial effects of biphasic brookite-anatase titanium dioxide nanoparticles on multiple-drug-resistant Staphylococcus aureus, J. Biomed. Nanotechnol. 4, 339 (2008).
https://doi.org/10.1166/jbn.2008.324

[62] P Dhandapani, S Maruthamuthu, G Rajagopal, Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm, J. Photochem. Photobiol. B Biol. 110, 43 (2012).
https://doi.org/10.1016/j.jphotobiol.2012.03.003

[63] J Rajkumari, C M Magdalane, et al., Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1, J. Photoch. Photobio. B. 201, 111667 (2019).
https://doi.org/10.1016/j.jphotobiol.2019.111667

[64] K S Landage, G K Arbade, P Khanna, C J Bhongale, Biological approach to synthesize TiO2 nanoparticles using Staphylococcus aureus for antibacterial and antibiofilm applications, J. Microbiol. Exp. 8, 36 (2020).

[65] A Simon-Deckers, S Loo, et al., Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria, Environ. Sci. Technol. 43, 8423 (2009).
https://doi.org/10.1021/es9016975

[66] J S Guo, P Zhang, Y P Chen, Y Shen, X Hu, P Yan, J X Yang, F Fang, C Li, X Gao, G X Wang, Microbial attachment and adsorption desorption kinetic of tightly bound extracellular polymeric substances on model organic surfaces, Chem. Eng. J. 279, 516 (2015).
https://doi.org/10.1016/j.cej.2015.05.016

[67] P Zhang, J S Guo, P Yan, Y P Chen, W Wang, Y Z Dai, F Fang, J X Wang, Y Shene, Dynamic dispersal of surface layer biofilm induced by nanosized TiO2 based on surface plasmon resonance and waveguide, App. Environ. Microbiol. 84, e00047 (2018).
https://doi.org/10.1128/AEM.00047-18

[68] F Lavaee, K Faez, K Faez, N Hadi, F Modaresi, Antimicrobial and antibiofilm activity of silver, titanium dioxide and iron nanoparticles, Americ. J. Dent. 29, 315 (2016).

[69] S Khan, J Ahmad, M Ahamed, J Musarrat, A Al-Khedhairy, Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis, J. Biol. Inorg. Chem. 21, 295 (2016).
https://doi.org/10.1007/s00775-016-1339-x

[70] S C Marques, J D Rezende, L A Alves, B C Silva, E Alves, L R Abreu, R H Piccoli, Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers, Braz. J. Microbiol. 38, 538 (2007).
https://doi.org/10.1590/S1517-83822007000300029

[71] L Zhong, Y Song, S Zhou, The effectiveness of Nafion-coated stainless steel surfaces for inhibiting Bacillus subtilis biofilm formation, Appl. Sci. 10, 5001 (2020).
https://doi.org/10.3390/app10145001

[72] R Ramachandran, D Sangeetha, Antibiofilm efficacy of silver nanoparticles against biofilm forming multidrug resistant clinical isolates, The Pharma. Innovation 6, 36 (2017).

[73] E Dworniczek, G Plesch, et al., Photocatalytic inactivation of an Enterococcus biofilm: The antimicrobial effect of sulphated and europium-doped titanium dioxide nanopowders, FEMS Microbiol. Lett. 363, fnw051 (2016).
https://doi.org/10.1093/femsle/fnw051

[74] A G Rodrigues, R De Cássia Ruiz, et al., Anti-Biofilm action of biological silver nanoparticles produced by Aspergillus tubingensis and antimicrobial activity of fabrics carrying it, Biointerface Res. Appl. Chem. 11, 14764 (2021).
https://doi.org/10.33263/BRIAC116.1476414774

[75] M Eltarahony, M Abu-Serie, H Hamad, S Zaki, D Abd-El-Haleem, Unveiling the role of novel biogenic functionalized CuFe hybrid nanocomposites in boosting anticancer, antimicrobial and biosorption activities, Sci. Rep. 11, 1 (2021).
https://doi.org/10.1038/s41598-021-87363-z