[1] N Panthi, I B Bhandari, I S Jha, I Koirala, Thermophysical behavior of sodium lead alloy at different temperature, Adv. Stud. Theor. Phys. 15, 153 (2021).
https://doi.org/10.12988/astp.2021.91548
  
  [2] Y Plevachuk, V Sklyarchuk, G Pottlacher, A Yakymovych, O Tkach, Thermophysical properties of some liquid binary Mg-based alloys, J. Min. Metall. B 53, 279 (2017).
https://doi.org/10.2298/JMMB170622029P
  
  [3] I Koirala, Chemical ordering of Ag-Au alloysin the molten state, J. I. S. T. 22, 191 (2018).
https://doi.org/10.3126/jist.v22i2.19612
  
  [4] D Adhikari, B P Singh, I S Jha, Phase separation in Na-K liquid alloy, Phase Transit. 85, 675 (2012).
https://doi.org/10.1080/01411594.2011.635903
  
  [5] P J Flory, Thermodynamics of high polymersolutions, J. Chem. Phys. 10, 51 (1942).
https://doi.org/10.1063/1.1723621
  
  [6] A B Bhatia, R N Singh, Thermodynamic properties of compound forming molten alloys in aweak interaction approximation, Phys. Chem. Liq. 11, 343 (1982).
https://doi.org/10.1080/00319108208080755
  
  [7] A B Bhatia, R N Singh, A quasi-lattice theory for compound forming molten alloys, Phys. Chem. Liq. 13, 177 (1984).
https://doi.org/10.1080/00319108408080778
  
  [8] A A Nayeb-Hashemi, J B Clark, The Mg-Pb (Magnesium-lead) system, Bull. Alloy Phas. Diagr. 6, 56 (1985).
https://doi.org/10.1007/BF02871188
  
  [9] L A Zabdyr, C Guminski, The Hg-Pb(Mercury-lead) system, J. Phase Equilib. 14, 734 (1993).
https://doi.org/10.1007/BF02667887
  
  [10] J A V Butler, The thermodynamics of the surfaces of solutions, Proc. R. Soc. Lond. A 135, 348 (1932).
https://doi.org/10.1098/rspa.1932.0040
  
  [11] L Y Kozlov, L M Romanov, N N Petrov, Prediction of multicomponent metallic melt viscosity, Izv. Vuz. Chern Metallurg 3, 7 (1983).
  
  [12] L C Prasad, R N Singh, A quasi-lattice modelfor the thermodynamic properties of Au-Zn liquid alloys, Phys. Chem. Liq. 22, 1 (1990).
https://doi.org/10.1080/0031910021000037300
  
  [13] R Novakovic, E Ricci, D Giuranno, F Gnecco, Surface properties of Bi-Pb liquid alloys, Surf.Sci. 515, 377 (2002).
https://doi.org/10.1016/S0039-6028(02)01923-4
  
  [14] R Novakovic, M L Muolo, A Passerone, Bulk and surface properties of liquid X-Zr (X= Ag, Cu) compound forming alloys, Surf. Sci. 549, 281 (2004).
https://doi.org/10.1016/j.susc.2003.12.006
  
  [15] I Budai, M Z Benkő, G Kaptay, Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys, Mater. Sci. Forum 537, 489 (2007).
https://doi.org/10.4028/www.scientific.net/MSF.537-538.489
  
  [16] G Kaptay, Improved derivation of the Butler equations for surface tension of solutions, Langmuir 35, 10987 (2019).
https://doi.org/10.1021/acs.langmuir.9b01892
  
  [17] K A Eldressi, H A Eltawahni, M Moradi, E R Twiname, R E Mistler, Energy effects in bulk metals, In: Reference module in materials science and materials engineering, Elsevier (2019).
https://doi.org/10.1016/B978-0-12-803581-8.03346-4
  
  [18] L C Prasad, R N Singh, G P Singh, The role of size effects on surface properties, Phys. Chem. Liq. 27, 179 (1994).
https://doi.org/10.1080/00319109408029523
  
  [19] R N Singh, Short-range order and concentration fluctuations in binary molten alloys, Can. J. Phys. 65, 309 (1987).
https://doi.org/10.1139/p87-038
  
  [20] A B Bhatia, D E Thornton, Structural aspects of the electrical resistivity of binary alloys, Phys. Rev. B 2, 3004 (1970).
https://doi.org/10.1103/PhysRevB.2.3004
  
  [21] M Cowley, Short- and long-range order parameters in disordered solid solutions, Phys. Rev. 120, 1648 (1960).
https://doi.org/10.1103/PhysRev.120.1648
  
  [22] B E Warren, X-ray Diffraction, Addison-Wesley Pub. Co., Reading (1969).
  
  [23] D R Poirier, G H Geiger, Transport phenomena in materials processing, TMS Publications, Warrendale PA (1994).
  
  [24] T Iida, R I Guthrie, The thermophysical properties of metallic liquids: Fundamentals, Oxford University Press, USA (2015).
https://doi.org/10.1093/acprof:oso/9780198729839.001.0001
  
  [25] A K Starace, C M Neal, B Cao, M F Jarrold, A Aguado, J M López, Correlation between the latent heats and cohesive energies of metal clusters, J. Chem. Phys. 129, 144702 (2008).
https://doi.org/10.1063/1.2987720
  
  [26] E A Brandes, G B Brook, Smithells metals reference book, Butterworth-Heinemann, Oxford (1992).
  
  [27] G Kaptay, A unified equation for the viscosity of pure liquid metals, Int. J. Mater. Res. 96, 24 (2005).
https://doi.org/10.3139/146.018080
  
  [28] T Iida, Physical properties of liquid metals [IV] surface tension and electronic transport properties of liquid metals, Weld. Int. 8, 766 (1994).
https://doi.org/10.1080/09507119409548692
  
  [29] I Koirala, B P Singh, I S Jha, Study of segregating nature in liquid Al-Ga alloys, Scientific World 12, 14 (2014).
https://doi.org/10.3126/sw.v12i12.13564
  
  [30] J U Brackbill, D B Kothe, C Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100, 335 (1992).
https://doi.org/10.1016/0021-9991(92)90240-Y
  
  [31] N Jha, A K Mishra, Thermodynamic and surface properties of liquid Mg-Zn alloys, J. Alloys Compd. 329, 224 (2001).
https://doi.org/10.1016/S0925-8388(01)01684-X
  
  [32] P Laty, J C Joud, P Desre, Surface tensions of binary liquid alloys with strong chemical interactions, Surf. Sci. 60, 109 (1976).
https://doi.org/10.1016/0039-6028(76)90010-8
  
  [33] G Kaptay, A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals, Mater. Sci. Eng. A 495, 19 (2008).
https://doi.org/10.1016/j.msea.2007.10.112
  
  [34] R Hultgren, P D Desai, D T Hawkins, M Gleiser, K K Kelley, Selected values of the thermodynamic properties of binary alloys, ASM, Metals Park, Ohio (1973).
  
  [35] R Novakovic, J Brillo, Thermodynamics, thermophysical and structural properties of liquid Fe-Cr alloys, J. Mol. Liq. 200, 153 (2014).
https://doi.org/10.1016/j.molliq.2014.09.053
  
  [36] G Kaptay, A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys, Adv. Colloid Interface Sci. 283, 102212 (2020).
https://doi.org/10.1016/j.cis.2020.102212