[1] C Riley, A De La Riva, et al., Synthesis of nickel-doped ceria catalysts for selective acetylene hydrogenation,
https://doi.org/10.1111/ina.12751
ChemCatChem 11, 1526 (2019).

[2] H A Miran, M Altarawneh, Z T Jiang, H Oskierski, M Almatarneh, B Z Dlugogorski, Decomposition of selected chlorinated volatile organic compounds by ceria (CeO$_2$),
https://doi.org/10.1039/C7CY01096F
Catal. Sci. Technol. 7, 3902 (2017).

[3] Z G Yan, C H Yan, Controlled synthesis of rare earth nanostructures,
https://doi.org/10.1039/B810586C
J. Mater. Chem. 18, 5046 (2008).

[4] K R B Singh, V Nayak, T Sarkar, R P Singh, Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application,
https://doi.org/10.1039/D0RA04736H
RSC Adv. 10, 27194 (2020).

[5] H A Miran, Z N Jaf, M Altarawneh, Z-T Jiang, An insight into geometries and catalytic applications of CeO$_2$ from a DFT outlook,
https://doi.org/10.3390/molecules26216485
Molecules 26, 6485 (2021).

[6] T Naganuma, E Traversa, Stability of the Ce3+ valence state in cerium oxide nanoparticle layers,
https://doi.org/10.1039/C2NR30406F
Nanoscale 4, 4950 (2012).

[7] H A Miran, M Altarawneh, et al., Thermo-mechanical properties of cubic lanthanide oxides,
https://doi.org/10.1016/j.tsf.2018.01.063
Thin Solid Films 653, 37 (2018).

[8] R Paulose, R Mohan, V Parihar, Nanostructured nickel oxide and its electrochemical behaviour — A brief review,
https://doi.org/10.1016/j.nanoso.2017.07.003
Nano-Structures & Nano-Objects 11, 102 (2017).

[9] M F Altaee, L A Yaaqoob, Z K Kamona, Evaluation of the biological activity of nickel oxide nanoparticles as antibacterial and anticancer agents,
https://doi.org/10.24996/ijs.2020.61.11.12
Iraqi J. Sci. 61, 2888 (2020).

[10] A S Mohammed, I M Ibrahim, A Ramizy, Energy band diagram of NiO: Lu$_2$O$_3$/n-Si heterojunction,
https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/99
Iraqi J. Sci. 59, 287 (2018).

[11] A Corma, P Atienzar, H Garc\'ia, J Y Chane-Ching, Hierarchically mesostructured doped CeO$_2$ with potential for solar-cell use,
https://doi.org/10.1038/nmat1129
Nat. Mater. 3, 394 (2004).

[12] Q Y Wen, H W Zhang, Q H Yang, S Li, D G Xu, J Q Yao, Fe-Doped polycrystalline CeO$_2$ as terahertz optical material,
https://doi.org/10.1088/0256-307X/26/4/047803
Chinese Phys. Lett. 26, 047803 (2009).

[13] C Xia, C Hu, P Chen, B Wan, X He, Y Tian, Magnetic properties and photoabsorption of the Mn-doped CeO$_2$ nanorods,
https://doi.org/10.1016/j.materresbull.2010.03.015
Mater. Res. Bull. 45, 794 (2010).

[14] S Tiwari, G Rathore, et al., Oxygen and cerium defects mediated changes in structural, optical and photoluminescence properties of Ni substituted CeO$_2$,
https://doi.org/10.1016/j.jallcom.2018.12.009
J. Alloys Compd. 782, 689 (2019).

[15] X Ma, P Lu, P Wu, Structural, optical and magnetic properties of CeO$_2$ nanowires with nonmagnetic Mg2+ doping,
https://doi.org/10.1016/j.jallcom.2017.11.023J
Alloys Compd. \734, 22 (2018).

[16] D Channei, B Inceesungvorn, N Wetchakun, S Ukritnukun, A Nattestad, J Chen, S Phanichphant, Photocatalytic degradation of methyl orange by CeO$_2$ and Fe-doped CeO$_2$ films under visible light irradiation
https://doi.org/10.1038/srep05757
Sci. Rep. 4, 1 (2014).

[17] R Zamiri, S A Salehizadeh, H A Ahangar, M Shabani, A Rebelo, J M F Ferreira, Dielectric and optical properties of Ni- and Fe-doped CeO$_2$ nanoparticles,
https://doi.org/10.1007/s00339-019-2689-3
Appl. Phys. A-Mater. 125, 1 (2019).

[18] D Rajsfus, A Salcedo, B Milberg, B Irigoyen, Nickel deposition on ceria : A DFT+U study,
this link
An. Asoc. Quim. Argent. 104, 44 (2017).

[19] H A Miran, Z N Jaf, I H Khaleel, A A Alkhafaji, Photocatalytic and optical performances of CeO$_2$ by substitution of titanium,
https://dx.doi.org/10.22036/pcr.2021.270358.1878
Phys. Chem. Res. 9, 553 (2021).

[20] M D Segall, P J D Lindan, M J Probert, C J Pickard, P J Hasnip, S J Clark, M C Payne, First-principles simulation: Ideas, illustrations and the CASTEP Code,
https://doi.org/10.1088/0953-8984/14/11/301
J. Phys. Condens. Matter 14, 2717 (2002).

[21] A J Cohen, P Mori-S\'anchez, W Yang, Insights into current limitations of density functional theory,
https://doi.org/10.1126/science.1158722
Science 321, 792 (2008).

[22] H A Miran, M Altarawneh, Z N Jaf, M M Rahman, M H Almatarneh, Z T Jiang, Influence of the variation in the Hubbard parameter (U) on activation energies of CeO$_2$-catalysed reactions,
https://doi.org/10.1139/cjp-2019-0065
Can. J. Phys. 98, 385 (2020).

[23] H Widjaja, H A Miran, M Altarawneh, I Oluwoye, H N Lim, N M Huang, Z T Jiang, B Z Dlugogorski, DFT + U and \ab initio atomistic thermodynamics approache for mixed transitional metallic oxides: A case study of CoCu$_2$O$_3$ surface terminations,
https://doi.org/10.1016/j.matchemphys.2017.08.047
Mater. Chem. Phys. 201, 241 (2017).

[24] Y Xue, D Tian, D Zhang, C Zeng, Y Fu, K Li, H Wang, Y Tian, The mechanism of photocatalyst and the effects of co-doping CeO$_2$ on refractive index and reflectivity from DFT calculation,
https://doi.org/10.1016/j.commatsci.2018.11.003
Comput. Mater. Sci. 158, 197 (2019).

[25] W Bi, S Sun, S Bei, Y Jiang, Effect of alloying elements on the mechanical properties of Mo$_3$Si,
https://doi.org/10.3390/met11010129
Metals 11, 1 (2021).

[26] R Lawler, J Cho, H C Ham, H Ju, S W Lee, J Y Kim, J Il Choi, S S Jang, CeO$_2$(111) surface with oxygen vacancy for radical scavenging: A density functional theory approach,
https://doi.org/10.1021/acs.jpcc.0c05717
J. Phys. Chem. C 124, 20950 (2020).

[27] C Loschen, J Carrasco, K M Neyman, F Illas, First-principles LDA + U and GGA + U study of cerium oxides: Dependence on the effective U parameter,
https://doi.org/10.1103/PhysRevB.75.035115
Phys. Rev. B 75, 035115 (2007).

[28] N V Skorodumova, R Ahuja, S I Simak, I A Abrikosov, B Johansson, B I Lundqvist, Electronic, bonding, and optical properties of CeO$_2$ and Ce$_2$O$_3$ from first principles,
https://doi.org/10.1103/PhysRevB.64.115108
Phys. Rev. B 64, 1151081 (2001).

[29] Z N Jaf, Z T Jiang, H A Miran, M Altarawneh, Thermo-elastic and optical properties of molybdenum nitride,
https://doi.org/10.1139/cjp-2016-0125
Can. J. Phys. 94, 902 (2016).