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A novel singularity-free black hole with nonlinear magnetic monopole:
Hawking radiation and quantum correction

Yu-Ching Chou1–4∗, Weihan Huang5

This paper introduces a nonlinear, magnetically charged, singularity-free black hole model.
The Ricci scalar, Kretschmann scalar, horizon, energy conditions, and Hawking radiation
corresponding to the singularity-free metric are presented, and the asymptotic behavior and
quantum correction of the model are examined. The model was constructed by coupling
a mass function with the regular black hole solution under nonlinear electrodynamics in
general relativity. Aside from resolving the problem of singularities in Einstein’s theory of
general relativity, the model asymptotically meets the quantum correction under an effective
field theory. This obviates the need for additional correction terms; in this regard, the
model outperforms the black hole models developed by Bardeen and Hayward. Regarding
the nonlinear magnetic monopole source of the gravitational field of the black hole, the
energy–momentum tensors fulfill weak energy conditions. The model constitutes a novel,
spherically symmetric solution to regular black holes.

I Introduction

Newton’s law of gravitation states that the collapse
of a nonrotating, perfectly spherical dust shell leads
to a singularity at the center because all of the mat-
ter simultaneously reaches r = 0. Subsequently, sin-
gularities would not occur if the initial configuration
of the matter were slightly distorted [1]. Therefore,
Huang (2020) [2] proposed a modification to New-
ton’s gravitation which obeys the inverse square law
and does not have singularities at r = 0. Accord-
ing to general relativity, the presence of trapped
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surfaces is the key to the formation of singularities
from gravitational collapse. They are surfaces on
which the radial coordinates of particles following
a timelike or a null curve can gradually only go to
reducing values. These trapped surfaces are sub-
ject to an extreme gravitational field, where light
emitted from the surface is dragged backward, and
describe the inner region of an event horizon. This
theoretical singularity exists in static black holes
[3, 4]. It follows the singularity theorem proposed
by Penrose and Hawking [5–7].

However, it is possible to speculate the existence
of singularity-free (regular) black holes. When cur-
vature increases (i.e., when the Planckian value is
reached), general relativity should be modified to
resolve singularity. Accordingly, Bardeen (1968) [8]
proposed the first static spherically symmetric regu-
lar black hole solution. This was followed by Dym-
nikova (1992) [9]; Mazur and Mottola (2001) [10];
Nicolini (2005) [11]; Hayward (2006) [12]; Hossen
felder, Modesto, and Pemont-Schwarz (2010) [13].
These above-mentioned regular black hole solutions
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all satisfy the weak energy conditions. Among them,
the Hayward metric is the simplest model. In ad-
dition, the regular black hole model established by
E Ayón-Beato and A Garćıa (1998) [14–16] can be
interpreted as a nonlinear electric or magnetic grav-
itational field monopole. In the past two decades,
some interesting solutions to Einstein’s equations
of general relativity have been constructed under
the framework of nonlinear electrodynamics (NED)
[17–22]. A recent study showed that in the Bardeen
model, parameter g is a magnetic monopole gravi-
tational field described by NED [23]. However, the
electromagnetic tensors used in Bardeen’s solution
are stronger than those used in Maxwell electrody-
namics when the limit of weak magnetic fields is
calculated [1]. To address this issue, Kruglov (2017)
[24] derived a magnetic black hole solution from the
exponential nonlinear framework of electrodynamics
(ENE).

Literature asserted that metrics that can suc-
cessfully simulate quantum effects must meet the
“one-loop quantum correction” of Newtonian poten-
tial, obtained through effective field theory [25–28].
The Bardeen model meets the quantum correction
asymptotically [27]; however, the Hayward model
does not, requiring additional correction terms to
be introduced [29].

This study aims to propose a novel singularity-
free black hole model, unlike Bardeen, Hayward,
and Kruglov’s ENE models. The proposed model,
based on the recent modification of Newtonian grav-
ity by Huang (2020) [2], is an extended version in
the framework of general relativity. It resolves the
singularity problem in Einstein’s theory, satisfies
weak energy conditions, and returns the electro-
magnetic field tensors of the Lagrange function for
the nonlinear magnetic monopole gravitational field
to Maxwell electrodynamics when calculating the
weak magnetic field limit. Simultaneously, the met-
ric meets the quantum correction asymptotically,
without additional correction terms.

This paper is organized as follows: First, we dis-
cuss the energy–momentum tensors of nonlinear
electrodynamics, going on to present a nonlinear,
magnetically charged, and singularity-free black hole
model developed by introducing mass functions to
the metric. Second, we present the Ricci scalar,
the Kretschmann’s scalar, the horizon, the energy
conditions, and the Hawking radiation for the met-
ric. Third, we discuss the asymptotic behavior and

quantum correction. We set the following param-
eter: c = G = 1. The first and second partial
differential of f(r) on r are noted as f ′ and f ′′.

II Energy–momentum tensor of non-
linear electrodynamics in general
relativity

In this section, we propose the energy–momentum
tensor of nonlinear electrodynamics under the gen-
eral relativity framework, a method used first by E
Ayón-Beato and A Garćıa [23]. Consider the follow-
ing action that represents nonlinear electrodynamics
in curved spacetime:

S =
1

16π

∫
d4x
√
−g (R− L(F)) , (1)

where F = FabF
ab is the square of the electromag-

netic field strength tensor, L is a Lagrangian density
function associated with F , and LF = ∂L

∂F . The
electromagnetic tensor Fab is defined based on the
vector potential Aa:

Fab = ∇aAb −∇bAa. (2)

Einstein’s equations are derived using Eq. (1):

Gab = Tab, (3)

Tab = 2

(
LFF 2

ab −
1

4
gabL

)
. (4)

The nonlinear Maxwell equations can be expressed
as follows:

∇a
(
LFF ab

)
= 0. (5)

When L(F) = F , Eq. (5) regresses to the standard
Maxwell equations.

We start with a following generalized spherical
symmetry metric:

ds2 = − f(r)dt2 + f(r)−1dr2 + r2dΩ2,

dΩ2 = dθ2 + sin2 θdφ2,

A = a(r)dt+Qm cos θdφ,

(6)

where Qm represents the overall magnetic charge
and can be defined as follows:
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Qm =
1

4π

∫
F . (7)

We found it extremely difficult to construct a solu-
tion to analyze black holes with hadronic charges.
However, we found it significantly easier to con-
struct a solution for single charges, i.e., a(r) = 0 or
Qm = 0. Therefore, we explicitly explain the use of
the abovementioned magnetic charge to construct
an exact black hole solution.

The primary motivation of this study is to cre-
ate a singularity-free black hole using the proposed
gravitational model. Therefore, we initially focused
on identifying the metrics that were consistently
instructive at the origin of spacetime. We parame-
terized the metric function as follows:

f(r) ≡ 1− 2M(r)

r
. (8)

The constant mass of Schwarzschild’s black hole was
replaced with a mass distribution function M(r).

Using the magnetically charged exact black hole
solution as an example, the metric function can
be parameterized using Eq. (6) and by setting
a(r) = 0. The results indicate that the nonlinear
Maxwell equations are self-satisfying.

We find only two following independent equations
for Einstein’s equations:

0 =
f ′

r
+
f − 1

r2
+

1

2
L, (9)

0 =f ′′ +
2f ′

r
+ L − 4Q4

m

r4
LF . (10)

The Lagrangian density L can be solved to be served
as a function for r.

L = −2

(
f ′

r
+
f − 1

r2

)
. (11)

Eq. (11) was incorporated into Eq. (10). We
found that for any given metric function, the latter
function is always self-satisfying. Therefore, the
most common method is to use Eq. (6) to derive
magnetically charged spherically symmetric static
solutions. During the parameterization of Eq. (8),
the Lagrangian density is simplified as follows:

L =
4M ′(r)

r2
. (12)

In addition, F can be expressed as follows:

F = FabF
ab =

2Q2
m

r4
. (13)

Therefore, one can freely select a mass function
M(r) of interest and then analytically resolve the
Lagrangian density to use it as a function for F .
This completes the calculations for a magnetically
charged static solution.

III Construction of a singularity-
free black hole model coupled
with nonlinear electrodynamics

In this section, we construct a singularity-free New-
tonian theory of gravity under the framework of
general relativity in curved spacetime using the re-
sults of the previous section. For this purpose, we
incorporated a mass function M(r) to couple with
the regular black hole solution with nonlinear elec-
trodynamics in general relativity. The proposed
model is as follows:

M(r) ≡M
(

r

r + h

)µ
,

fCH(r) ≡ 1− 2M(r)

r
, (14)

ds2 = −fCH(r)dt2 + fCH(r)−1dr2 + r2dΩ2,

where a small constant h (unit: length) was inserted
to prevent divergence of the equation when r → 0.
fCH(r) is referred to as the Chou-Huang function,
and µ is a dimensionless parameter that should be
solved to satisfy the Einstein–Maxwell equations,
µ > 0, while M is a constant denoting gravitational
mass. When µ = 1 and h→ 0, the metric regresses
to the Schwarzschild’s metric with a mass of M .
This prevents the scalar curvature from diverging
when r → 0. The Ricci scalar is expressed as follows:

R =
2µ(µ+ 1)Mh2

r(3−µ)(r + h)µ+2
. (15)

This equation highlights that R satisfies the condi-
tion of nondivergence for the scalar curvature when
µ ≥ 3. To simplify calculations, we only discuss
µ = 3 in this study. By inserting Eq. (15), we
obtain the following:
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R =
24Mh2

(r + h)5
. (16)

Furthermore, we prove the metric couples to
Maxwell electrodynamics in the weak-field limit.
Einstein’s equations (9)-(10) and Eq. (12) with La-
grangian density are solved regarding mass function
M(r), obtaining the mass function in the following
form:

M(r) = M − β h
3

α

[
1−

(
r

r + h

)3
]
, (17)

where α is a constant (unit: length squared),

and satisfies α = h4

2Q2
m

. The term β h
3

α denotes

the electromagnetic-induced mass Mem, and β de-
notes a dimensionless constant. We assumed the
gravitational mass M to be equal to Mem, i.e.,

M = Mem ≡ β h
3

α . Subsequently, Eq. (17) would
return to the form of Eq. (14). Using the definition
of F in Eq. (13), we obtained the following:

αF =

(
h4

2Q2
m

)(
2Q2

m

r4

)
=
h4

r4
. (18)

We simplified the Lagrangian density to the follow-
ing:

L =
4M ′(r)

r2
=

12β

α

(
h

r + h

)4

=
12βF(

1 + (αF)1/4
)4 .
(19)

Thereafter, we used M and Qm to express α.

L(F) =
12βF(

1 + (
8Q6

m

M4 F)1/4
)4 , (20)

where the Lagrangian contains fractional powers

of F and F = FabF
ab =

2Q2
m

r4 ≥ 0. Under the
weak magnetic field limit, M � Qm and L(F) →
12βF . Therefore, when β = 1/12, L(F) regresses
to Maxwell electrodynamics. Finally, we solved the
Chou-Huang function and obtained the following:

fCH(r) = 1− 2M

r

(
r

r + h

)3

. (21)

The calculations were inserted into Eq. (14) to
obtain a singularity-free metric. The metric line
elements are the following:

ds2 = −
(

1− 2Mr2

(r + h)3

)
dt2

+

(
1− 2Mr2

(r + h)3

)−1
dr2 + r2dΩ2,

(22)

The Ricci scalar and Kretschmann’s scalar are ex-
pressed as follows:

R =
24Mh2

(r + h)5
, (23)

K =
48M2(2h4 + 7h2r2 − 2hr3 + r4)

(r + h)10
. (24)

When h → 0, the metric is restored to
Schwarzschild’s metric with a constant mass of
M . The asymptotic of the Ricci and Kretschmann
scalars can be obtained as follows:

R =
24M

h3
− 120Mr

h4
+

360Mr2

h5
+O(r3) r → 0,

(25)

R =
24Mh2

r5
− 120Mh3

r6
+O(r−7) r →∞,

(26)

K =
96M2

h6
− 960M2r

h7
+

5616M2r2

h8
+O(r3) r → 0,

(27)

K =
48M2

r6
− 576M2h

r7
+O(r−8) r →∞. (28)

The Ricci and Kretschmann scalars vanish, and the
spacetime becomes flat when r approaches infinity.
Eqs (25)–(28) indicate that the metric in Eq. (22)
is regular. We thus complete the extension of revis-
ing Newtonian gravity under the general relativity
framework.

IV Energy condition

We note that Eq. (20) satisfies weak energy con-
ditions. Let X be a timelike field without loss of
generality. X can be selected as a normal field (i.e.,
XaX

a = −1). The local energy density along X
can be expressed using the right side of Eq. (4), as
follows:

TabX
aXb = 2

(
EγE

γLF +
1

4
L
)
. (29)
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Figure 1: Plot of the Chou-Huang function fCH(r).
Variation of the fCH(r) with different values of Mc

while maintaining h = 1, when r > 0; fCH(r) = 0
is the future trapping region: M > M∗ contains
two horizons, M = M∗ contains one horizon, and
M < M∗ does not contain any horizons.

By definition, Eγ = FγδX
δ is orthogonal to X.

Therefore, it is a spacelike vector (EγE
γ > 0). Us-

ing Eq. (29), we could determine that if L ≥ 0
and LF ≥ 0, there would not be any negative local
energy densities anywhere in the field. This is a
weak energy condition. The quantities of nonnega-
tivity were derived using Eq. (20). Therefore, the
proposed model satisfies weak energy conditions.

V Horizon

gtt = 0 was used to infer the horizon of the black
hole.

fCH(r) = 1− 2Mr2

(r + h)3
= 0. (30)

Eq. (30) is a cubic equation.

r3 + (3h− 2M)r2 + 3h2r + h3 = 0. (31)

The coefficient of the term r3 is greater than zero;
the cubic equation has three roots. This article only
discusses the solutions when r > 0.

According to its discriminant, −24M3h3 +
81M2h4, we derived the following: M > M∗ ≡ 27h

8 .
fCH(r) = 0 allows two real roots; however, M = M∗

only contains one real root. These are future ex-
ternal and internal trap horizons surrounding the
gravitational trapping region, as illustrated in Fig. 1.

To derive exact solutions for the two horizons (r+
and r−), we defined the following:

cos θ =

(
1− 9h

2M + 27h2

8M2

)
(
1− 9h

M + 27h2

M2 − 27h3

M3

) 1
2

. (32)

The analytical solution of r > 0 in Eq. (31) can
be expressed as follows:

r+ =− h+
2

3
M

(
1 + 2

√
1− 3h

M
cos(

θ

3
)

)
, (33)

r− =− h+
2

3
M

(
1− 2

√
1− 3h

M
cos(

θ + π

3
)

)
.

(34)

At one limit, M = M∗, θ = π, and cos θ = −1.
Under this condition, the two horizons merged into
one at the following:

r+ = r− = r∗ =
16

27
M∗ = 2h. (35)

Another interesting limit was found at M � h.
Under this condition, θ = 0 and cos θ = 1.

r+ =− h+
2

3
M

(
1 + 2

√
1− 3h

M

)

=2M − 3h− 3h2

2M
− 9h3

4M2
+O(h4) ∼= 2M,

(36)

r− =− h+
2

3
M

(
1− 2

√
1− 3h

M

(
1

2

))

=
3h2

4M
+

9h3

8M2
+

135h4

64M3
+O(h5) ∼=

3h2

4M
,

(37)

where the r+ horizon is approximated to 2M , the
horizon of Schwarzschild’s metric with a mass of M .
The r− horizon is approximated to 3h2

4M , which has
a positive value close to zero.
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Figure 2: Plot of the Hawking radiation tempera-
ture as a function of r+. We let h = 1 (blue), 0.1
(red), and 0.01 (purple). TH has a maximum value

of 5−2
√
6

4πh when r+ = (2 +
√

6)h. It then quickly
becomes 0 when r+ = 2h, turning negative when
r+ < 2h.

VI Hawking radiation

Hawking radiation is a quantum effect of black holes,
in which the quantum tunneling effect causes parti-
cles in black holes to pass through the event horizon.
The tunneling probability of this process can be cal-
culated. We do not discuss the derivation process in
detail here in this paper. The results indicate that
the Hawking radiation is proportional to the gravity
κ on the horizon surface. The Hawking radiation
temperature (TH) for metric (22) can be expressed
as follows:

TH ≡
κ

2π
=
f ′CH(r+)

2
. (38)

The results of Eq. (21) were inserted into Eq. (38),
and the following equation for TH was derived:

TH =
2M(r2+ − 2hr+)

4π(r+ + h)4
=

(r+ − 2h)

4πr+(r+ + h)
, (39)

where TH is a function of r+. We let h = 1, 0.1,
and 0.01 to plot a function graph of TH versus
r+, as shown in Fig. 2. It shows that when r+ is
close to 0, unlike the TH of the Schwarzschild met-

ric, the TH has a maximum value of 5−2
√
6

4πh when

r+ = (2 +
√

6)h, and then quickly becomes 0 when

r+ = 2h, and turns negative when r+ < 2h. In
addition, we can elucidate Hawking radiation tem-
perature by observing two limits. At one of the
limits, M = M∗ and r+ = 2h, where the TH ap-
proximates zero. Therefore, the proposed model
predicts that radiation ceases but does not com-
pletely evaporate when the mass of the black hole
reaches the critical value M∗. Naturally, the other
limit was at M � h. At this instance, r+ ∼= 2M ,
whereby the TH approximated to Schwarzschild’s
metric, TH ∼= 1

8πM .

VII Asymptotic behavior and quan-
tum correction

We find from the asymptotic behavior of this
singularity-free metric that there are several note-
worthy characteristics. It approaches a static,
spherically symmetric charged black hole satisfying
Einstein–Maxwell equations and meets the quantum
correction under the effective field theory. First, the
Taylor expansion of the Chou-Huang function ap-
proximating the center can be expressed as follows:

fCH(r) =1− 2Mr2

h3
+

6Mr3

h4
+O(r4)

∼=1− 2GMr2

c2h3
,

(40)

where all the physical constants were regressed. Sub-
sequently, de Sitter’s spacetime can be expressed as
follows:

fds(r) = 1− Λ

3
r2. (41)

This equation is like that of Hayward’s spacetime.
The de Sitter’s core protected spacetime from the
presence of singularity. We compared Eqs. (40)
and (41) and found several interesting interactions
between the physical constants.

Λ ∼=
6GM

c2h3
. (42)

Therefore, the singularity-free physical characteris-
tics of h are associated with the cosmological con-
stant Λ.

Moreover, when r → ∞, this metric asymptoti-
cally approximates to the following Taylor expan-
sion:
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−gtt = 1− 2M

r
+

6Mh

r2
− 12Mh2

r3
+O

(
1

r4

)
, (43)

where the r−1 term can be used to determine the
association between M and the configured mass, the
r−2 term can be used to determine the association
between h and certain “Coulomb” charges, such
as those in the Reissner–Nordström solution. We
insert α = h4

2Q2
m

, M = β h
3

α , and β = 1/12 into Eq.

(43) and obtain the following:

− gtt = 1− 2M

r
+
Q2
m

r2
− 12Mh2

r3
+O

(
1

r4

)
, (44)

where Qm is the total magnetic charge. Metric
(22) was asymptotically approximated to the Reiss-
ner–Nordström solution, a static spherically sym-
metrical charged black hole.

Furthermore, we found that the r−3 term can
serve as a “quantum correction” factor in metric
(22). Literature suggests that metrics must meet the
“one-loop quantum correction” of Newtonian poten-
tial, derived from effective field theory, to effectively
simulate quantum effect [25–28]. Specifically,

Φ(r) = −GM
r

(
1 + γ

l2

r2

)
+
GQ2

m

2r2
+O

(
1

r4

)
,

(45)
where G is the Newtonian constant of gravity,
γ = 41

10π [25], γ = 121
10π [27], and l is the Planck

length. The Newtonian limit for the standard
Schwarzschild’s metric can be expressed as follows:

Φ(r) = −1

2
(1 + gtt) . (46)

Equation (44) can be rewritten to restore the New-
tonian constant of gravity. Thereafter, the following
was obtained:

Φ(r) = −GM
r

(
1 +

6h2

r2

)
+
GQ2

m

2r2
+O

(
1

r4

)
.

(47)
A comparison of the coefficients revealed the rela-
tionship between h and l:

h =

√
γ

6
l, (48)

where h ∼ 10−35m is in the same order of magnitude
as the Planck length.

VIII Conclusion

This study proposes a novel spherically symmetric
regular black hole solution. It was extended from
our singularity-free Newtonian gravity, in which
Ricci scalar and Ricci curvature invariant does not
diverge as r → 0. We prove that the physical mean-
ing of h can be interpreted as magnetic monopole
charges described in NED. The energy–momentum
tensors of this source satisfy weak energy condi-
tions. Under weak field limits, the Lagrangian den-
sity regresses to normal Maxwell’s equations. The
asymptotic behavior of the metric shows that it
has the de Sitter’s core in the center. Moreover,
when r tends to infinity, it regresses to the Reiss-
ner–Nordström solution in the r−2 term and meets
the quantum correction in the r−3 term. The above-
mentioned results can be derived directly from our
model without additional corrections, outperform-
ing those produced by the Bardeen and Hayward
models. It requires further investigations.
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