[1] H M Jaeger, S R Nagel, R P Behringer, Granular solids, liquids, and gases, Rev. Mod. Phys. 68, 1259 (1996).

[2] R M Nedderman, et al., Statics and kinematics of granular materials, Cambridge University Press, Cambridge (1992).

[3] M Oda, K Iwashita, Mechanics of granular materials: An introduction, CRC Press, London (2020).

[4] F Radjai, D E Wolf, M Jean, J-J Moreau, Bimodal character of stress transmission in granular packings, Phys. Rev. Lett. 80, 61 (1998).

[5] C Zhai, Y Gan, D Hanaor, G Proust, Stress dependent electrical transport and its universal scaling in granular materials, Extreme Mech. Lett. 22, 83 (2018).

[6] O Birkholz, Y Gan, M Kamlah, Modeling the effective conductivity of the solid and the pore phase in granular materials using resistor networks, Powder Technol. 351, 54 (2019).

[7] E T Owens, K E Daniels, Sound propagation and force chains in granular materials, Europhys. Lett. 94, 54005 (2011).

[8] C Zhai, E B Herbold, R C Hurley, The influence of packing structure and interparticle forces on ultrasound transmission in granular media, Proc. Natl. Acad. Sci. U.S.A. 117, 16234 (2020).

[9] R Hurley, J Lind, D Pagan, M Akin, E Herbold, In situ grain fracture mechanics during uniaxial compaction of granular solids, J. Mech. Phys. Solids 112, 273 (2018).

[10] C Zhai, E Herbold, S Hall, R Hurley, Particle rotations and energy dissipation during mechanical compression of granular materials, J. Mech. Phys. Solids 129, 19 (2019).

[11] L Vanel, P Claudin, J-P Bouchaud, M Cates, E Clément, J Wittmer, Stresses in silos: Comparison between theoretical models and new experiments, Phys. Rev. Lett. 84, 1439 (2000).

[12] B Ferdowsi, M Griffa, R Guyer, P Johnson, C Marone, J Carmeliet, Microslips as precursors of large slip events in the stick-slip dynamics of sheared granular layers: A discrete element model analysis, Geophys. Res. Lett. 40, 4194 (2013).

[13] S Bardenhagen, J Brackbill, Dynamic stress bridging in granular material, J. Appl. Phys. 83, 5732 (1998).

[14] A H Clark, A J Petersen, R P Behringer, Collisional model for granular impact dynamics, Phys. Rev. E 89, 012201 (2014).

[15] T Hatano, C Narteau, P Shebalin, Common dependence on stress for the statistics of granular avalanches and earthquakes, Sci. Rep. 5, 1 (2015).

[16] T T Vo, S Nezamabadi, P Mutabaruka, J-Y Delenne, F Radjai, Additive rheology of complex granular flows, Nat. Commun. 11, 1 (2020).

[17] N S Deshpande, D J Furbish, P E Arratia, D JJerolmack, The perpetual fragility of creeping hillslopes, Nat. Commun. 12, 1 (2021).

[18] R Hurley, K Lim, G Ravichandran, J Andrade, Dynamic inter-particle force inference in granular materials: Method and application, Exp.Mech. 56, 217 (2016).

[19] A Drescher, G D J De Jong, Photoelastic verification of a mechanical model for the flow of a granular material, J. Mech. Phys. Solids 20, 337 (1972).

[20] T S Majmudar, R P Behringer, Contact force measurements and stress-induced anisotropy in granular materials, Nature 435, 1079 (2005).

[21] R Hurley, E Marteau, G Ravichandran, J E Andrade, Extracting inter-particle forces in opaque granular materials: Beyond photoelasticity, J. Mech. Phys. Solids 63, 154 (2014).

[22] K E Daniels, J E Kollmer, J G Puckett, Photoelastic force measurements in granular materials, Rev. Sci. Instrum. 88, 051808 (2017).

[23] A A Zadeh, J Barés, T A Brzinski, K E Daniels, et al., Enlightening force chains: Areview of photoelasticimetry in granular matter, Granul. Matter 21, 1 (2019).

[24] N W Hayman, L Ducloué, K L Foco, K E Daniels, Granular controls on periodicity of stick-slip events: Kinematics and force-chains in an experimental fault, Pure Appl. Geophys. 168, 2239 (2011).

[25] A Shukla, C Damania, Experimental investigation of wave velocity and dynamic contact stresses in an assembly of disks, Exp. Mech. 27, 268 (1987).

[26] A Thomas, N Vriend, Photoelastic study of dense granular free-surface flows, Phys. Rev. E 100, 012902 (2019).

[27] J A Dijksman, F Rietz, K A Lőrincz, M van Hecke, W Losert, Invited article: Refractive index matched scanning of dense granular materials, Rev. Sci. Instrum. 83, 011301 (2012).

[28] J Brujić, S F Edwards, D V Grinev, I Hopkinson, D Brujić, H A Makse, 3D bulk measurements of the force distribution in a compressed emulsion system, Faraday discuss. 123, 207 (2003).

[29] R Hurley, S Hall, J Andrade, J Wright, Quantifying interparticle forces and heterogeneity in 3D granular materials, Phys. Rev. Lett. 117, 098005 (2016).

[30] A Gupta, R Crum, C Zhai, K Ramesh, R Hurley, Quantifying particle-scale 3D granular dynamics during rapid compaction from time resolved in situ 2D X-ray images, J. Appl. Phys. 129, 225902 (2021).

[31] M Scheel, R Seemann, M Brinkmann, M Di Michiel, A Sheppard, B Breidenbach, S Herminghaus, Morphological clues to wet granular pile stability, Nature Mater. 7, 189 (2008).

[32] D P Finegan, M Scheel, J B Robinson, et al., In-operando high-speed tomography of lithium-ion batteries during thermal runaway, Nat. Commun. 6, 1 (2015).

[33] L Hunter, J Dewanckele, Evolution of micro-CT: Moving from 3D to 4D, Microscopy Today 29, 28 (2021).

[34] J Deng, C Preissner, J A Klug, S Mashrafi, et al., The velociprobe: An ultrafast hard X-ray nanoprobe for high-resolution ptychographic imaging, Rev. Sci. Instrum. 90, 083701 (2019).

[35] R L Biegel, C G Sammis, J H Dieterich, The frictional properties of a simulated gouge having a fractal particle distribution, J. Struct. Geol. 11, 827 (1989).

[36] C G Sammis, S J Steacy, The micromechanics of friction in a granular layer, Pure Appl. Geophys. 142, 777 (1994).

[37] A Tordesillas, J Zhang, R Behringer, Buckling force chains in dense granular assemblies: Physical and numerical experiments, Geomech. Geoengin. 4, 3 (2009).

[38] A Rechenmacher, S Abedi, O Chupin, Evolution of force chains in shear bands in sands, Géotechnique 60, 343 (2010).

[39] K Gao, R Guyer, E Rougier, C X Ren, P A Johnson, From stress chains to acoustic emission, Phys. Rev. Lett. 123, 048003 (2019).

[40] M L Falk, M Toiya, W Losert, Shear transformation zone analysis of shear reversal during granular flow, arXiv preprint arXiv:0802.1752 (2008). [41] L Bocquet, A Colin, A Ajdari, Kinetic theory of plastic flow in soft glassy materials, Phys. Rev. Lett. 103, 036001 (2009).

[42] K Kamrin, G Koval, Nonlocal constitutive relation for steady granular flow, Phys. Rev. Lett. 108, 178301 (2012).

[43] D V Denisov, K A Lőrincz, W J Wright, T C Hufnagel, A Nawano, X Gu, J T Uhl, K A Dahmen, P Schall, Universal slip dynamics in metallic glasses and granular matter-linking frictional weakening with inertial effects, Sci. Rep. 7, 1 (2017).

[44] A Le Bouil, A Amon, S McNamara, J Cras- sous, Emergence of cooperativity in plasticity of soft glassy materials, Phys. Rev. Lett. 112, 246001 (2014).

[45] D L Henann, K Kamrin, A predictive, size-dependent continuum model for dense granular flows, P. Natl. Acad. Sci. USA 110, 6730 (2013).

[46] K Kamrin, D L Henann, Nonlocal modeling of granular flows down inclines, Soft Matter 11, 179 (2015).

[47] K Wünnemann, G Collins, H Melosh, A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets, Icarus 180, 514 (2006).

[48] M J Cherukara, T C Germann, E M Kober, A Strachan, Shock loading of granular Ni/Al composites. Part 1: Mechanics of loading, J. Phys. Chem. C 118, 26377 (2014).

[49] H Kocharyan, N Karanjgaokar, Influence of interactions between multiple point defects on wave scattering in granular media, Granul. Matter 24, 1 (2022).

[50] D J Jerolmack, K E Daniels, Viewing Earth's surface as a soft-matter landscape, Nat. Rev. Phys. 1, 716 (2019).

[51] E Andò, J Dijkstra, E Roubin, C Dano, E Boller, A peek into the origin of creep in sand, Granul. Matter 21, 1 (2019).

[52] M Erpelding, A Amon, J Crassous, Diffusive wave spectroscopy applied to the spatially resolved deformation of a solid, Phys. Rev. E 78, 046104 (2008).

[53] A Amon, A Bruand, J Crassous, E Clément, et al., Hot spots in an athermal system, Phys. Rev. Lett. 108, 135502 (2012).

[54] C-P Hsu, S N Ramakrishna, M Zanini, N D Spencer, L Isa, Roughness-dependent tribology effects on discontinuous shear thickening, P. Natl. Acad. Sci. USA 115, 5117 (2018).

[55] R Seto, R Mari, J F Morris, M M Denn, Discontinuous shear thickening of frictional hard-sphere suspensions, Phys. Rev. Lett. 111, 218301 (2013).

[56] N Brodu, J A Dijksman, R P Behringer, Spanning the scales of granular materials through microscopic force imaging, Nat. commun. 6, 1 (2015).

[57] M Saadatfar, A P Sheppard, T J Senden, A J Kabla, Mapping forces in a 3D elastic assembly of grains, J. Mech. Phys. Solids 60, 55 (2012).

[58] X Xiao, F Fusseis, F De Carlo, X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at advanced photon source, Proc. SPIE 8506, 107 (2012).

[59] N D Parab, B Claus, M C Hudspeth, J T Black, A Mondal, J Sun, K Fezzaa, X Xiao, S Luo, W Chen, Experimental assessment of fracture of individual sand particles at different loading rates, Int. J. Impact Eng. 68, 8 (2014).

[60] B Jensen, D Montgomery, A Iverson, C Carlson, B Clements, M Short, D Fredenburg, X-ray phase contrast imaging of granular systems, in: Shock phenomena in granular and porous materials, Eds. T Vogler, D Fredenburg, Pag. 195, Springer (2019).

[61] J Baker, F Guillard, B Marks, I Einav, X-ray rheography uncovers planar granular flow despite non-planar walls, Nat. commun. 9, 1 (2018).

[62] M Rutherford, J Derrick, D Chapman, G Collins, D Eakins, Insights into local shockwave behavior and thermodynamics in granular materials from tomography-initialized mesoscale simulations, J. Appl. Phys. 125, 015902 (2019).

[63] M Khalili, S Brisard, M Bornert, P Aimedieu, J-M Pereira, J-N Roux, Discrete digital projections correlation: A reconstruction-free method to quantify local kinematics in granular media by X-ray tomography, Exp. Mech. 57, 819 (2017).

[64] E Andò, B Marks, S Roux, Single-projection reconstruction technique for positioning monodisperse spheres in 3D with a divergent X-ray beam, Meas. Sci. Technol. 32, 095405 (2021).

[65] F Guillard, B Marks, I Einav, Dynamic X-ray radiography reveals particle size and shape orientation fields during granular flow, Sci. Rep.7, 1 (2017).