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Bespoke particle shapes in granular matter

D. Cantor'; M. Cérdenas-Barrantes®® | L. Orozco’ *

Among granular matter, one type of particle has special properties. Upon being assembled
in disordered configurations, these particles interlock, hook, almost braid, and — surpris-
ingly, considering their relatively low packing fractions — show exceptional shear strength.
Such is the case of non-convex particles. They have been used in the shapes of tetrapods,
‘L, ‘Z’, stars, and many others, to protect coasts or build self-standing structures requir-
ing no binders or external supports. Although these structures are often designed without
a comprehensive mechanical characterization, they have already demonstrated great po-
tential as highly resistant construction materials. Nevertheless, it is natural to attempt
to find the most appropriate non-convex shapes for any given application. Can a particle
shape be tuned to obtain a desired mechanical behavior? Although this question cannot be
answered yet, current technological, simulation, and experimental developments strongly
suggest that it can be resolved in the next decade. A clear understanding of the relation-
ships between particle shapes, mechanical response, and packing properties will be key to
providing insights into the behavior of these materials. Such work should stand on 1) ro-
bust and general shape descriptors that encode the complexity of non-convex shapes (i.e.,
the number of arms, the symmetries and asymmetries of the bodies, the presence of holes,
etc.), 2) the analysis of the response of assemblies under different loading conditions, and
3) the disposition and reliability of non-convex shapes to ensure durability. The manufac-
turing process and an efficient use of resources are additional elements that could further
help to optimize particle shape. In the quest of designing bespoke non-convex particles,
this paper consolidates the challenges that remain unresolved. It also outlines some routes
to explore based on the latest developments in technology and research.

I. Introduction
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Figure 1(b) shows a self-standing structure eas-
ily reaching a few meters high, requiring no exter-
nal support or binding materials. These innova-
tive applications expose the great potential non-
convex particles possess as construction materi-
als where interlocking, braiding, or stacking ele-
ments can dramatically improve mechanical prop-
erties [5—11]. In addition, non-convex shapes such
as ‘Z’ [11] can also continuously gain shear strength
as strains do not necessarily trigger failure, but
rather promote particle rearrangement and further
interlocking [12-14]. Since the particles used for
many of these applications are replicated from a
single shape — or a few shapes —, the fabrication
processes and disposition of the pieces can be au-
tomated for construction in environments of diffi-
cult access or that require remote-controlled ma-
chinery /robots [15,16].

It is evident that non-convex particles could
vary infinitely in shape. In practice, there are
branched, twisted, curved, asymmetric, and even
convex shapes with hollowed faces creating truss
structures [17-19].

It is natural, then, to inquire into the best shape
for a given application. Although intuition may
suggest that assemblies of ‘Z’ or ‘L’ shaped parti-
cles can develop higher strengths, there are no sys-
tematic studies allowing one to determine which
non-convex shape performs better than another.
So far, studies have used different particle shapes
and tested various characterization approaches that
produce no comparable results. While the particle
shape is central to designing tailored /bespoke gran-
ular materials, other aspects such as deposition or
assembly methods, particle strength, and construc-
tive processes should also be considered to optimize
the particle geometry for a given application.

In the following, we present the challenges that,
in our opinion, can be addressed in the near future
to make bespoke granular matter the next genera-
tion of construction materials.

II. Challenges

i. How is particle geometry described?

Many shape descriptors found in the literature are
focused on describing convex shapes (i.e., shapes
without cavities) by means of their sphericity, as-
pect ratio, angularity, flatness, elongation, round-

ness, and irregularity [22-28]. These parameters
often fail to describe the complexity of non-convex
shapes or do not allow one to have a straightforward
picture of the particle. As an alternative, Fourier
descriptors have been used to represent non-convex
shapes [29,30]. However, this method may need a
large set of parameters when dealing with asym-
metric or highly irregular geometries. In general,
there is no consensus on a parameter or a set of pa-
rameters to describe the complexity of non-convex
bodies.

The first challenge is the development of simple
and robust geometrical descriptors, allowing one to
compare different families of particle shapes. This
descriptor - or set of descriptors - should be able
to encode as much information as possible regard-
ing the characteristics of non-convex shapes, such
as the number of arms, symmetry or asymmetry
of the body, the presence of holes, recurrent pat-
terns, among others. Furthermore, any descriptor
should be sufficiently clearsuch that its definition
maps directly into basic or elemental parameters.

Once the descriptors are set, efforts should be
focused on systematically linking them to the me-
chanical behavior (compaction, shear strength, rhe-
ology of quasi-static and inertial flows) and pack-
ing properties of particle assemblies. For this, ex-
periments and simulations are valuable tools that
should be developed to work in synergy and mutu-
ally enrich each other’s observations.

ii. Physical experiments

In experiments, for example, the technology of 3D
printing has allowed one to precisely control the
shape of particles to be later assembled in struc-
tures [31]. Although some studies have performed
qualitative characterization of the resistance of
non-convex particle assemblies [5,9, 10, 32], only a
few have quantitatively assessed their mechanical
response and packing properties [11,33-36]. The
current technological capabilities suggest that hun-
dreds - or even thousands - of particles can be
built and tested in standard devices (triaxial, shear
cells, rheometers, etc.). However, to the best of
our knowledge, this has not been done. Besides, it
is unclear how to scale up the obtained properties
from the laboratory scale to large size applications
such as coastal barriers.

The second challenge is related to the fabrication
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Figure 1: Examples of structures built using non-convex particles: a) coastal barrier (public image by Pok Rie
[20]) and b) aggregate wall (with permission of Karola Dierichts [21]).

of non-convex shapes and the mechanical character-
ization of assemblies either in standard equipment
or non-conventional devices (e.g., large-scale shear
boxes [37,38]).

Up to now, the physical characterization we
have mentioned refers to macroscopic mechanical
or packing properties. However, it is well known
that such responses are related to the mechanics at
the scale of the particles and their contacts [39-41].
Recently, several efforts have been put into charac-
terizing the mechanics at such small scales. For in-
stance, novel fast digital image analysis allows one
to track a particle’s positions when loaded [42-45].
Among them, it is worth mentioning the use of
photo-elastic particles, which can not only display
the contact network, but also permits us to esti-
mate the force and stress intensities within the par-
ticles [416-19].

Despite the advances in these experimental ap-
proaches, their use is seldom seen when it comes to
non-convex particle assemblies.

The third challenge corresponds to exploring the
microstructure and force transmission mechanisms
within assemblies of non-convex bodies. This re-
quires the development of robust and efficient digi-
tal image analyses capable of dealing with complex
entangled particles that are often ambiguous, diffi-
cult to identify one from another.

iii. Numerical simulations

An alternative means to probe the packing proper-
ties and load distribution within a granular sample
is numerical simulations. To simulate discrete mat-
ter, some of the most popular approaches are the
discrete-element method (DEM) [50-52], and the
material point method (MPM) [53-55]. In particu-
lar, DEM strategies have proven to be quite advan-
tageous since they provide a detailed description of
the micromechanics of granular materials (e.g., par-
ticle connectivity, fabric anisotropy, contact force
network, etc.) while being capable of dealing with
collections of rigid [56,57] and deformable bodies
[58-60] of varied sizes and shapes [61,62], under a
large variety of boundary conditions.

Even though the simulation of non-convex gran-
ular assemblies is in rapid development today [17,
63-70], these works also expose some of the limita-
tions of the current modeling approaches. First, the
shape of the bodies is sometimes represented using
clumped spheres [71], sphero-polyhedra [72, 73] or
superquadrics [74]. Although these strategies allow
one to use well-known methods for convex bodies,
the discretization of the shapes may add artificial
textures on the surfaces, or they can be rapidly lim-
ited when pointy geometries or sharp edges need to
be considered. Other strategies that discretize bod-
ies using multiple vertices and faces to represent the
particles often require excessive storage space and
expensive 1/O operations that penalize the num-
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ber of particles that can be considered. Secondly,
contact detection strategies require further opti-
mization and are computationally prohibitive when
dealing, for instance, with elongated or long-armed
bodies. Since contact detection is often based on
the overlapping of spheres enveloping the bodies,
such approaches can largely overestimate potential
contacts in the case of non-convex particles, which
can dramatically slow down the time stepping evo-
lution of a simulation. Finally, it remains difficult
to draw clear comparisons between studies given
the broad spectrum of particle shapes considered
and the lack of a consensus, once again, in the pa-
rameters to describe non-convex geometries.

The fourth challenge is to develop new algo-
rithms that provide an accurate representation of
non-convex shapes while facilitating or optimizing
contact detection. These developments should be
conceived and developed as scalable, highly parallel
algorithms that could be used in cluster comput-
ing (e.g., HPC and GPU computing). Equally im-
portant will be validating the well-known microme-
chanical analyses of granular materials to any par-
ticle shape by means of simulation campaigns over
a broad range of parameters.

The advances on the experimental and simula-
tion axes will naturally lead to the validation of
the numerical models that, then, can be extended
to more complex particle shapes and boundary con-
ditions. Extensive systematic simulation studies,
in which one can clearly control the physical and
numerical parameters, can thus provide further in-
sights into the mechanical behavior of granular
matter composed of non-convex bodies.

III. Tuning particle shape for appli-

cations

While theoretical, experimental, and numerical ap-
proaches are valuable tools to explore the mechan-
ics of granular media, the applications or indus-
trial stakes may determine pertinent features that
particles and assemblies should exhibit. As men-
tioned before, coastal protection structures have
consisted of various shapes, including tetrapods,
tripods, cubes, dolossa, etc. Even though all of
them dissipate energy and contribute to erosion
prevention, it is not clear which features led en-
gineers to prefer one shape over others.

The fifth challenge is to develop methodologies to
tune particle shape for a specific application, based
on the thorough geometrical and mechanical char-
acterization of non-convex shapes.

Although the mechanical response of the granu-
lar assemblies can often be the key parameter to
choose a specific particle shape, other elements ac-
counting for the durability and reliability of the
structures should also be considered. For in-
stance, additional analyses may include the break-
age strength of the particles, the settlements over
time due to particle rearrangement, the capabili-
ties for particle manufacturing, and the initial con-
ditions of the arrangements (e.g., deposition, pre-
loading, etc.).

More recently, the scarcity of materials due to
supply chain unreliability and the need for reduc-
ing ecological footprints are issues that call for the
reusability of the individual bodies, or for their be-
ing manufactured from local materials. This last
challenge is indeed broader and may involve the
science of new composite materials from renewable
sources. Nevertheless, the task may largely benefit
from advances in the mechanics of granular media
of varied shaped bodies.

IV. Summary and perspectives
Arrangements of non-convex particles often present
outstanding properties regarding their shear
strength, mainly due to their capacity to hook, in-
terlock, and entangle. These materials also present
low packing fractions which favor efficient energy
dissipation, as in the case of coastal barriers. De-
spite the multiple advantages non-convex particle
assemblies can display, their mechanical behavior
is still poorly understood. Indeed, there are no
methodologies to determine what shapes provide
more strength than others, and it is not clear how
to optimize particle shape for a given application.
To correctly match non-convex particle shapes to
applications, a series of challenges need to be over-
come. They include 1) the development of robust -
yet simple - geometrical descriptors, allowing one to
compare different shapes; 2) the generation of par-
ticle assemblies for systematic studies on their me-
chanical properties with experiments and numeri-
cal simulations. The synergy between experiments
and numerical modeling will be key to rapidly gath-
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ering insights on the mechanical behavior of these
materials; 3) the micro-mechanical analyses to un-
derstand the particularities of these materials that
lead to their exceptional macroscopical properties;
and finally, 4) the identification of additional ele-
ments that limit the range of possibilities for parti-
cle shape or allow one to optimize the mechanical
properties for a given application.

State-of-the-art experiments and simulations
suggest that these challenges can be successfully
addressed in the near future. In terms of experi-
ments, X-ray tomography, 3D printing, and digital
image analyses are promising tools and strategies
largely used for convex grains, awaiting general-
ization to any particle shape. Regarding numeri-
cal modeling, discrete-element approaches seem to
present a privileged framework for exploring the
macro and microscopic responses of assemblies of
complex shaped bodies. However, this task requires
several improvements in the algorithms’ efficiency
and their scalability to work on highly parallelized
environments. Although artificial intelligence (AI)
is just debuting in the field of granular materials
[75,76], it is going to be an essential tool for the
optimization of particle shapes under a set of con-
straints. These Al tools will benefit from the ex-
perimental and numerical axes of research and can
shed light into more fundamental aspects concern-
ing a unified geometrical descriptor for non-convex
grains and the physics of granular media.

Optimizing particle shapes in granular matter
will also benefit from multidisciplinary contribu-
tions including mathematics, statistics, computer
science, chemistry, among others. Although we
focused our exposition on civil structures, this is
a topic spanning different fields of material tech-
nology, engineering, architecture, bio-inspired ma-
terials, etc. Undoubtedly, materials composed of
non-convex particles may be the next generation of
building materials for optimized structures based
on the idea of tailored granular matter or bespoke
particle shapes.
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