[1] GDR MiDi, On dense granular flows, Eur. Phys. J. E 14, 341 (2004).

[2] O Pouliquen, Y Forterre, A non-local rheology for dense granular flows, Phil. Trans. R. Soc. A 367, 5091 (2009).

[3] M Godet, The third-body approach: A mechanical view of wear, Wear 100, 437 (1984).

[4] Y Berthier, L Vincent, M Godet, Velocity accommodation in fretting, Wear 125, 25 (1988).

[5] G Golas, A Saulot, C Godeau, Y Michel, Y Berthier, Describing third body flows to solve dry lubrication issue - MoS2 case study underultrahigh vacuum, Wear 305, 192 (2013).

[6] D. Bonn, Exp observation 3è corps.

[7] K Holmberg, A Erdemir, Influence of tribology on global energy consumption, costs andemissions, Friction 5, 263 (2017).

[8] H Haddad, M Guessasma, J Fortin, A DEM-FEM coupling based approach simulating thermomechanical behaviour of frictional bodies with interface layer, Int. J. Solids Struct. 81, 203 (2016).

[9] S Descartes, Y Berthier, Rheology and flows ofsolid third bodies: Background and application to an MoS1.6 coating, Wear 252, 546 (2002).

[10] K A Kounoudji, M Renouf, G Mollon, Y Berthier, Role of third body on bolted joints' self-loosening, Tribol. Lett. 61, 25 (2016).

[11] R H Sibson, Fault rocks and fault mechanisms, J. Geol. Soc. 133, 191 (1977).

[12] J R Rice, J W Rudnicki, J D Platt, Stability and localization of rapid shear in fluid-saturated fault gouge: 1. Linearized stability analysis, J. Geophys. Res. Solid Earth 119, 4311 (2014).

[13] J D Platt, N Brantut, J R Rice, Strain localization driven by thermal decomposition during seismic shear, J. Geophys. Res. Solid Earth 120, 4405 (2015).

[14] H Rattez, I Stefanou, J Sulem, M Veveakis, T Poulet, The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part II: Numerical implementation and post-bifurcation analysis, J. Mech. Phys. S. 115, 1 (2018).

[15] C Scholz, The mechanics of earthquakes and faulting (2nd ed.), Cambridge University Press, Cambridge (2002).

[16] N Fillot, I Iordanoff, Y Berthier, Modelling third body flows with a discrete element method - A tool for understanding wear with adhesive particles, Tribol. Int. 40, 973 (2007).

[17] I Iordanoff, Y Berthier, S Descartes, H Heshmat, A review of recent approaches for modeling solid third bodies, J Tribol. 124, 725 (2002).

[18] G Mollon, A numerical framework for discrete modelling of friction and wear using Voronoi polyhedrons, Tribol. Int. 90, 343 (2015).

[19] M Renouf M, N Fillot, Coupling electrical and mechanical effects in discrete element simulations, Int. J. Numer. Methods Eng. 74, 238 (2008).

[20] J Rivière, M Renouf, Y Berthier, Thermo-mechanical investigations of a tribological interface, Tribol. Lett. 58, 48 (2015).

[21] Y Guo, J Morgan, Fault gouge evolution and its dependence on normal stress and rock strength - Results of discrete element simulations: Gouge zone properties, J. Geophys. Res. Solid Earth 112, B10403 (2007).

[22] S Abe, K Mair, Effects of gouge fragments shape on fault friction: New 3D modelling results, Geophys. Res. Lett. 36, L23302 (2009).

[23] O Dorostkar, R A Guyer, P A Johnson, C Marone, J Carmeliet, Cohesion-induced stabilization in stick-slip dynamics of weakly wet, sheared granular fault gouge, J. Geophys. Res. Solid Earth 123, 2115 (2018).

[24] D T Gethin, R W Lewis, R S Ransing, A discrete deformable element approach for the compaction of powder systems, Model. Simul. Mater. Sci. Eng. 11, 101 (2003).

[25] F Güner, Ö Necati Cora, H Sofuoǧlu, Numerical modeling of cold powder compaction using multi particle and continuum media approaches, Powder Technol. 271, 238 (2015).

[26] T H Nguyen, S Nezamabadi, J Y Delenne, F Radjai, Compaction of granular materials composed of deformable particles, Powders and Grains 2017, EPJ Web Conf. 140, 05013 (2017).

[27] D Cantor, M Cárdenas-Barrantes, I Preechawuttipong, M Renouf, E Azéma, Compaction model for highly deformableparticle assemblies, Phys. Rev. Lett. 124, 208003 (2020).

[28] N Brodu, J A Dijksman, R P Behringer, Multiple-contact discrete-element model for simulating dense granular media, Phys. Rev. E. 91, 032201 (2015).

[29] M Asadi, A Mahboubi, K Thoeni, Discrete modeling of sand-tire mixture considering grain-scale deformability, Granul. Matter 20, 18 (2018).

[30] A Platzer, S Rouhanifar, P Richard, B Cazacliu, E Ibraim, Sand-rubber mixtures undergoing isotropic loading: Derivation and experimental probing of a physical model, Granul. Matter 20, 81 (2018).

[31] T L Vu, J Barès, S Mora, S Nezamabadi, Numerical simulations of the compaction of assemblies of rubberlike particles: A quantitative comparison with experiments, Phys. Rev. E 99, 062903 (2019).

[32] J A Dijksman, N Brodu, R P Behringer, Refractive index matched scanning and detection of soft particles, Rev. Sci. Instrum. 88, 051807 (2017).

[33] G Mollon, A multibody meshfree strategy for the simulation of highly deformable granular materials, Int. J. Numer. Methods Eng. 108, 1477 (2016).

[34] G Mollon, A unified numerical framework for rigid and compliant granular materials, Comp. Part. Mech. 5, 517 (2018).

[35] G Mollon, Solid flow regimes within dry sliding contacts, Tribol. Lett. 67, 120 (2019).

[36] O Bouillanne, G Mollon, A Saulot, S Descartes, N Serres, K Demmou, G Chassaing, Detecting vorticity in cohesive deformable granular material, Powders and Grains 2021, EPJ Web Conf. 249, 08005 (2021).

[37] Y Zhang, G Mollon, S Descartes, Significance of third body rheology in friction at a dry sliding interface observed by a multibody meshfree model: Influence of cohesion between particles, Tribol. Int. 145, 106188 (2020).

[38] N Casas, G Mollon, A Daouadji, DEM analysis of cemented granular fault gouge at the onset of seismic sliding: Peak strength, development of shear zones and kinematics, Pure Appl. Geophys. 179, 679 (2022).

[39] N Casas, G Mollon, A Daouadji, Shear bands in dense fault gouge, Powders and Grains 2021, EPJ Web Conf. 249, 11006 (2021).

[40] G Mollon, J Aubry, A Schubnel, Simulating melting in 2D seismic fault gouge, J. Geophys. Res. Solid Earth 126, e2020JB021485 (2021).

[41] J R Rice, Heating and weakening of faults during earthquake slip, J. Geophys. Res. Solid Earth 111, 1 (2006).

[42] D L Goldsby, T E Tullis, Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates, Science 334, 216 (2011).

[43] G Di Toro, T Hirose, S Nielsen, G Pennacchioni, T Shimamoto, Natural and experimental evidence of melt lubrication of faults during earthquakes, Science 311, 647 (2006).

[44] V Gardien, A B Thomson, P Ulmer, Melting of biotite + plagioclase + quartz gneisses: The role of H2O in the stability of amphibole, J. Petrol. 41, 651 (2000).

[45] G Mollon, Mixture of hard and soft grains: Micromechanical behavior at large strains, Granul. Matter 20, 1 (2018).

[46] V Levy dit Vehel, T Hatano, L Vanel, K J Maloy, O Ramos, Dilation as a precursor in a continuous granular fault, Powders and Grains 2021, EPJ Web Conf. 249, 15006 (2021).

[47] C Marone, Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Pl. Sc. 26, 643 (1998).

[48] E Andò, S A Hall, G Viggiani, J Desrues, P Bésuelle, Grain-scale experimental investigation of localised deformation in sand: a discrete particle tracking approach, Acta Geotech. 7, 1 (2012).

[49] J T Jenkins, M Larcher, Segregation in a dense, inclined, granular flow with basal layering, Granul. Matter 22, 1 (2020).

[50] I Preechawuttipong, R Peyroux, F Radjai, Microscopic features of cohesive granular media, In: Powders and Grains 2001, Ed. Y Kishino, Pag. 43, CRC Press, London (2020).

[51] H Shi, S Roy, T Weinhart, V Magnanimo, S Luding, Steady state rheology of homogeneous and inhomogeneous cohesive granular materials, Granul. Matter 22, 1 (2020).

[52] S Mandal, M Nicolas, O Pouliquen, Rheology of cohesive granular media: Shear banding, hysteresis, and nonlocal effects, Phys. Rev. X 211, 021017 (2022).

[53] R Jaza, G Mollon, S Descartes, A Paquet, Y Berthier, Lessons learned using machine learning to link third body particles morphology to interface rheology, Tribol. Int. 153, 106630 (2021).

[54] A Bouchot, A Ferrieux, J Debayle, G Mollon, S Descartes, Image processing applied to tribological dry contact analysis, Wear 476, 203748 (2021).

[55] Y Berthier, Experimental evidence for friction and wear modelling, Wear 139, 77 (1990).

[56] A Gans, O Pouliquen, M Nicolas, Cohesion-controlled granular material, Phys. Rev. E 101, 032904 (2020).

[57] A Quacquarelli, G Mollon, T Commeau, N Fillot, A dual numerical-experimental approach for modeling wear of Diamond Impregnated Tools, Wear 478-479, 203763 (2021).

[58] D Dowson, A generalized Reynolds equation for fluid-film lubrication, Int. J. Mech. Sci. 4, 159 (1962).

[59] G Mollon, J Aubry, A Schubnel, Reproducing laboratory earthquakes with a discrete-continuum model, Powders and Grains 2021, EPJ Web Conf. 249, 02013 (2021).

[60] J Aubry, F X Passelègue, D Deldicque, F Girault, S Marty, A Lahfid, H S Bhat, J Escartin, A Schubnel, Frictional heating processes and energy budget during laboratory earthquakes, Geophys. Res. Lett. 45, 274 (2018).

[61] M Nitka, G Combe, C Dascalu, J Desrues, Two-scale modeling of granular materials: A DEM-FEM approach, Granul. Matter 13, 277 (2011).

[62] N Guo, J Zhao, A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media, Int. J. Num. Meth. Eng. 99, 789 (2014).

[63] Y Caniven, J K Morgan, D G Blank, The role of along-fault dilatancy in fault slip behavior, J. Geophys. Res. Solid Earth 126, e2021JB022310 (2021).

[64] G Mollon, The soft discrete element method, Granul. Matter 24, 1 (2022).

[65] J Aubry, Séismes au laboratoire: Friction, plasticité et bilan énergétique, PhD Thesis, École Normale Supérieure, PSL Université (2019).

[66] W L Vargas, J J McCarthy, Heat conduction in granular materials, AIChE J. 47, 1052 (2001).

[67] E J R Parteli, T Pöschel, Particle-based simulation of powder application in additive manufacturing, Powder Technol. 288, 69 (2016).