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Calibration of DEM simulations for dynamic particulate systems

C.R.K. Windows-Yule1∗, A. Neveu2

Calibration and validation represent crucial but often-overlooked ingredients in the suc-
cessful application of discrete element method (DEM) simulations. Without rigorous cal-
ibration/validation protocols, the results of DEM simulations can be imprecise or even
unphysical, yet all too often the methods used by practitioners are at best cursory, and
at worst entirely absent. As the particle-handling industries show an increasing interest
in DEM, it is vital that this issue be resolved lest a potentially powerful tool be written
off by industry as unreliable. In this work, we provide a concise overview of contempo-
rary methods used in the calibration and validation of DEM simulations of powder flows,
providing practical insights into their strengths and weaknesses, and ideas for manners in
which they may be improved and/or rendered more easily adoptable in the future.

I. Introduction: The importance of cal-

ibration and validation

The discrete element method (DEM) is a power-
ful tool which – if correctly applied – can simulate,
with quantitative accuracy, a diverse range of par-
ticulate systems with applications spanning multi-
ple academic disciplines and almost every industrial
sector [1–3].

One of the major limitations of DEM, however,
is that without rigorous calibration and validation
– that is to say, the careful choice of simulation
parameters to match those of the ‘real’ particles
simulated, and the verification that the behaviours
of the resultant model match those of the ‘real’
system – the simulations produced are liable to
be inaccurate, or even unphysical [4]. The cali-
bration of DEM models is, however, not a trivial
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task. While there exists a diverse array of tools
designed to characterise the properties of powders
and particulates [5], most – if not all – of these
tools quantify only the bulk or ‘macroscopic’ prop-
erties of powders (flowability, yield stress, angle of
internal friction...) as opposed to the particle-level
or ‘microscopic’ parameters (restitution coefficient,
coefficient of sliding and/or rolling friction...) re-
quired by contemporary DEM engines.

In this article, we provide an overview of contem-
porary methods for the calibration and validation
of DEM models, discussing the advantages and lim-
itations of different approaches, and how they may
be developed and improved in the future.

II. Calibration

i. Indirect calibration

Methods for the calibration of DEM simulations
can be divided into two broad categories: direct
(or ‘bottom-up’) calibration and indirect (or ‘top-
down’) calibration. In the former, the parameters
of the particle contact model are directly estimated
from particles’ microscopic properties measured us-
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Figure 1: From top left to bottom right, digital twins
of a Schulze shear cell, a Granutools GranuDrum, an
FT4 powder rheometer, and a Granutools GranuHeap.
Though in these representative images the particles
depicted are spherical (unlike those used in a major-
ity of real industrial processes), the models are fully-
compatible with aspherical particle models. The open-
source models of all four systems may be downloaded
the University of Birmingham Positron Imaging Centre
Github repository (https://github.com/uob-positron-
imaging-centre).

ing particle-scale experiments, such as measuring
the coefficient of friction of a single particle, to
give an example. In the latter, one or more bulk
properties of the particulate are measured, and
the microscopic properties of the individual par-
ticles back-computed from these measurements to
determine the contact model parameters. This can
be achieved either by using scaling laws mapping
macroscopic to microscopic properties [6] or, as we
will focus on in this article, by using ‘digital twins’
examples of which may be seen in Fig. 1 of the
powder characterisation devices used to determine
the set of model parameters that provide the same
bulk behaviour exhibited in the ‘real’, physical sys-
tem. In addition to direct and indirect calibration,
we must also consider input – the process of de-
termining the particle properties (e.g. morphology
and density) we wish to emulate in simulation.

When building a DEM simulation, the sizes and
shapes of the DEM particles have to be defined.
There exists a wide array of methodologies through
which to estimate the sizes, and particle size distri-
butions, of particles. These methodologies include
sieving [7], image analysis [8], laser diffraction, dy-
namic light scattering and other light-scattering
methods [9, 10], the electrozone method [10, 11],
and time-of-flight measurements [12], each of which
carries its own distinct strengths and weaknesses

which, for the sake of brevity, we will not discuss
at length here.

A crucial limitation common to many of the
aforementioned methods, however, is that the size
of a particle is quantified using a single, scalar
value, typically a sphere- or circle-equivalent sphere
diameter [13], thus omitting crucial details re-
garding the particle’s geometry. While this may
be sufficient for highly-spherical particles, for as-
pherical particles, key properties such as elonga-
tion (aspect ratio) [14], angularity [15] or non-
convexity [16] – which may significantly affect par-
ticle dynamics and thus should be represented
in any rigorous DEM model – are not meaning-
fully captured. Nonetheless, widely-available (two-
dimensional) image analysis methods can capture
averaged statistics relating to these properties, and
the full, three-dimensional geometries of particles
may be accurately captured using 3D scanning
methodologies [17,18].

The accurate measurement of particle geometry
is, however, only half of the battle, as the imple-
mentation of complex shapes in DEM simulations
usually requires a rework of the contact detection
algorithm, as well as other parts of the DEM model,
relating to the mechanical forces and heat transfer
between particles [19–26]. While this is not nec-
essarily the case for ‘clump’ (multi-sphere/glued-
sphere) methods [27], such methods are generally
considered not to be suitable for modelling highly
angular particles. Implementing an accurate par-
ticle size distribution for spherical particles is, by
contrast, mercifully straightforward – though simu-
lating wide PSDs with high fidelity can prove com-
putationally challenging [28].

In the following sections we discuss the direct and
indirect calibration of contact model parameters in
further detail, outlining their major strengths and
weaknesses, the practicalities of their application,
and their general suitability for use in industrial
DEM.

ii. Direct calibration

Direct calibration, while conceptually simple, can,
in practice, be highly challenging. For the mea-
surement of certain properties there exist well-
established, standardised procedures, which may
be simply performed using commercially-available
systems. For example, particle density can gener-
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ally be measured to a high degree of accuracy using
gas pycnometry [29].

However, other particle properties are distinctly
more difficult to measure precisely than the sizes
and shapes of particles. The coefficient of restitu-
tion (CoR), ε, provides an infamous example. Intu-
itively, one may expect this parameter to be fairly
easy to measure – drop a particle from a known
height, measure how high it bounces (off a solid
surface or another particle) and use the ratio of
bounce height to drop height to measure the en-
ergy lost, and thus the value of ε. In reality, how-
ever, there are numerous complicating factors to
consider, of which we give here just a few of the
most significant: the particle must be dropped in
such a manner that it has no ‘spin’ either before or
after collision, as in most set-ups energy lost to the
particle’s rotational modes cannot be distinguished
from energy lost due to restitution; the collision
surfaces must be clean, dry and as close to per-
fectly smooth as possible so as to avoid imperfect
contacts or energy loss to other sources; particles
must be suitably large, dense and dry that cohesion
effects – which cannot be easily distinguished from
the effect of the CoR – do not influence results; a
large enough number of repeat experiments must
be performed to ensure adequate statistics. For as-
pherical particles, measurements are more complex
still [30]: though the shape of a particle does not
influence the inherent CoR of a material, if the par-
ticle used in an experiment such as those described
above is not a perfect sphere (or, alternatively, a
perfect cube) it is extremely difficult to perform
said experiments without energy loss to the rota-
tional modes, which may be difficult to decouple
from energy loss due to restitution.

Despite these difficulties, several researchers have
made excellent attempts at characterising and mea-
suring the restitution coefficients of diverse mate-
rials [31–35], including the particularly challeng-
ing case in which particles or surfaces are wet-
ted [36, 37]. However, the time-intensive nature of
the experiments, the lack of commercially-available
equipment with which to perform them, and the
aforementioned limitations on particle size, make
such measurements unsuitable for many industrial
applications.

The coefficient of friction is somewhat easier,
though still by no means trivial, to measure di-
rectly. Commonly-used approaches for such mea-

Figure 2: A microtribometer system (left) and its appli-
cation measuring the particle-wall coefficient of friction
of a coffee bean by measuring the force required to slide
it across a flat, horizontal surface under a known nor-
mal load.

surements include microtribometry (See Fig. 2)
[38–40] and simple planar angle of friction tests
[41, 42]. The former involves the use of a robotic
arm to apply a pre-defined normal force (Fn) to
the material of interest (typically a single parti-
cle), which is glued or otherwise attached to said
arm, whilst translating it horizontally across a sur-
face and measuring the tangential force (Ft) pro-
duced, thus allowing the (sliding) frictional coef-
ficient, µs, to be calculated based on Coulomb’s
law (Ft ≤ µsFn). The latter test is conducted by
affixing a monolayer of particles to a pair of flat
plates which are placed atop one another. They
are then tilted until the plates slide apart allow-
ing a sliding friction coefficient to be estimated as
µs = tan θ. Both methods can be used to measure
both particle-particle and – where a suitable sam-
ple of the relevant wall material is also available –
particle-wall sliding friction coefficients.

In the context of DEM calibration, there remain
questions as to whether the frictional coefficients
measured using the above techniques correspond
precisely to the coefficients implemented in DEM,
and thus whether they can be used safely for di-
rect calibration. Certainly, prior work comparing a
‘real’ and simulated planar angle of friction tester
has shown that there is not a one-to-one correspon-
dence [41]. The discrepancies observed between the
experimental and numerical cases likely arise from
differences between the perfect contact assumed in
DEM and the real-life situation, where microscopic
surface roughness will typically yield an imperfect
contact between any two macroscopic objects. This
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discrepancy could potentially be reconciled by mea-
suring the surface roughness of said objects to de-
termine an effective contact area though – as is so
often the case with DEM calibration – this is not a
trivial task.

The coefficient of rolling friction, µr – a param-
eter relevant to spherical particles, akin to sliding
friction but, as its name suggests, applied to the rel-
ative rotational motion of particles – may also be
measured using a similarly simple test. The ramp
rolling friction test [43, 44] involves rolling a par-
ticle down a smooth ramp of height h and onto a
smooth, level substrate. The coefficient of rolling
friction may then be determined simply as the ra-
tio h

d , where d is the distance travelled across the
substrate before coming to rest. Similarly to the
previously mentioned CoR tests, the results of the
ramp rolling friction tests become difficult to inter-
pret when adhesive effects are likely to be signifi-
cant. As such, while such tests can be useful for
measuring the properties of larger particles, they
become less useful for smaller (and otherwise more
adhesive) particles, limiting their value in many in-
dustrial applications. The tests are also once again
reliant on the use of highly clean, smooth surfaces.

The cohesive and adhesive properties of parti-
cles can also be measured in a relatively straight-
forward manner using, for example, atomic force
microscopy [45–48]; once again, however, such mea-
surements require careful preparation and choice of
equipment [45,47], as well as expertise in the oper-
ation thereof.

While the above certainly does not represent
a comprehensive list of direct measurement tech-
niques, it nonetheless demonstrates a clear running
theme: that such measurements, though concep-
tually simple, require an extremely (in some cases
almost unfeasibly) careful execution in order to pro-
duce meaningful results. It thus illustrates an im-
portant point, namely that in order to fully cal-
ibrate a material using direct measurement tech-
niques, one requires both a significant amount of
specialised, often not-commercially-available equip-
ment, and a significant amount of time and re-
sources to execute the measurements correctly and
produce adequate statistics.

It is finally worth noting the common – though
somewhat contentious – suggestion that due to
the key simplifications associated with numerical
models (DEM included), direct calibration cannot

be expected to accurately reproduce the bulk be-
haviours of the systems modelled. To put it differ-
ently, the advantage of a precise evaluation of mi-
croscopic particle parameters can be lost in the sim-
plicity of the contact model – even if we put in the
effort to rigorously and accurately measure the fric-
tional coefficient and CoR, the resultant simulation
often has little correlation to the real system. Cer-
tainly this is not true in all cases – for example, in
the 2003 work of Xu et al. [49], good, quantitative
agreement was achieved between low-energy micro-
gravity experiments, kinetic-theory-based models,
and hard-sphere DEM simulations calibrated using
exclusively direct methods. However, for less ide-
alised systems (notably dense, high-stress systems
where considerable deformation may be expected
and thus the fundamental assumptions of DEM be-
gin to break down) the efficacy of direct-calibration
methods has not, to the authors’ knowledge, been
rigorously proven. Further research into a) the ef-
fectiveness of direct calibration methods under di-
verse system conditions, and b) the development of
more detailed models of the physical mechanisms
underlying particle interactions, would both repre-
sent highly valuable pursuits.

From the previous section, it is apparent that
while the full calibration of a DEM simulation using
exclusively direct methods is possible under suit-
able conditions, for most industrial applications –
where particles are often small, cohesive and geo-
metrically complex, time and manpower are finite,
and a wide range of distinct materials is typically
used – such an approach is unfeasible. Indirect
calibration provides an alternative approach which
overcomes some of these limitations, but nonethe-
less introduces complexities of its own.

A common approach to indirect calibration in
industry can be broadly outlined as follows:

i. Perform one or more characterisation tests on
the particulate of interest, thus determining
one or more macroscopic responses.

ii. Perform multiple simulations of the character-
isation process using a digital twin of the char-
acterisation tool(s) used, implementing various
combinations of values for the microscopic pa-
rameters to be calibrated.

iii. For each simulation performed, determine the
macroscopic response(s) measured in i., and
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compare the equivalent simulated value ob-
tained to the experimental measurement.

iv. For a suitable set of experiments and simula-
tions, the set of microscopic parameters pro-
ducing the closest agreement between simula-
tion and experiment can be taken as the ‘true’
values.

A simple example would be to use an angle of
repose tester to measure the experimental angle of
repose (AoR), φexp., of a given particulate, per-
form a set of simulations with a DEM model of the
same angle of repose tester using various values of,
for example, the sliding (µs) and rolling (µr) coef-
ficients of friction, and then determine the values
of µs and µr for which the difference between the
experimental and simulated values of the angle of
repose, σφ = |φexp. − φsim.|, is minimal. Assuming
all other particle properties are already known, the
combination of µs and µr yielding a minimum in
σφ should, hypothetically, represent the true val-
ues of these parameters. In reality, however, this
is not necessarily the case – see, as an example,
Fig. 3, which shows the value of σφ for 256 per-
mutations of µs and µr. It is immediately obvious
from this image that there exist numerous distinct
permutations yielding extremely low σφ, suggesting
that there are multiple possible combinations of µs
and µr capable of recreating the experimentally-
measured angle of repose. Such an outcome should

Figure 3: Example of the variation with µs and µr of
the absolute deviation σφ = |φexp.−φsim.| between the
measured and simulated dynamic angle of repose for a
simple, spherical, non-cohesive powder.

Figure 4: In addition to simple angle of repose mea-
surements, the free surface of a rotating drum (i.e. a
dynamic angle of repose tester) in the rolling or cascad-
ing regimes can be characterised by a third-order poly-
nomial, providing additional information which can be
used to back-calculate microscopic particle properties.

perhaps not be surprising, as in the current case we
are, in essence, attempting to solve a problem with
two free parameters using only a single objective.
To put it in less abstract terms, as the AoR is de-
pendent on both the sliding and rolling coefficients
of friction, it makes intuitive sense that a decrease
in µs might be compensated for by an increase in µr
in order to maintain a single value of φ, thus giving
rise to the ‘L’-shaped region of possible solutions
observed.

The problem outlined above is not insurmount-
able, however. The yield loci produced by shear
cells [50–52], or the torque vs. depth profiles of the
Freeman FT4 powder rheometer [53], for example,
produce distinct functional forms dependent on the
frictional, cohesive and geometric properties of the
particulates examined. As such, they each provide
more than one objective/constraint, allowing them
to potentially determine multiple free parameters
simultaneously. Indeed, even for the case of a (dy-
namic) angle of repose tester, one may solve such
problems by considering not only a single-valued
angle of repose, but the full free-surface profile of
the particulate flow (see e.g. Fig. 4). For highly
multi-dimensional optimisation problems – that is
to say, if we wish to simultaneously calibrate a sig-
nificant number of distinct parameters using an ex-
clusively indirect approach – it will likely become
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necessary to use multiple characterisation devices
in order to provide the necessary number of objec-
tives/constraints.

Increasing the number of parameters to indi-
rectly calibrate also introduces additional complex-
ities beyond simply the need to perform more char-
acterisation tests. In the example depicted in
Fig. 3, we wish to determine the values of two DEM
parameters, meaning that we must, in effect, solve
an optimisation problem in a two-dimensional (µs-
µr) parameter space. Even in this comparatively
simple, two-dimensional example, we have per-
formed Ns = 162 = 256 simulations. If we wanted
to calibrate also the restitution coefficient, for ex-
ample, and to explore the new, three-dimensional
phase space to the same degree of detail as the
original 2D case, then we would need to perform
instead Ns = 163 = 4, 096 simulations. To cali-
brate also the cohesive energy density would thus
require Ns = 65, 536. If we additionally wanted
to separately calibrate particle-wall and particle-
particle values for µs and µr then we would need
to run a staggering Ns = 16, 777, 216 simulations
which, even for an extremely well-resourced com-
pany, would likely prove an insurmountable chal-
lenge. As such, it is clear that in order to max-
imise the value of indirect calibration approaches,
we need to utilise more intelligent schemes than the
simple, brute-force approach exhibited here. Con-
siderable increases in efficiency can be achieved,
for example, by using standard Design of Exper-
iment approaches [54] to explore the parameter
space more efficiently, and/or by reducing the size
of the parameter space to explore using prior knowl-
edge of the system (for example, if the material is
known to be free-flowing, there is no need to cali-
brate the cohesive energy density, thus immediately
reducing the dimensionality of the problem).

The development of intelligent methods and algo-
rithms for the calibration of DEM models is, in fact,
an active area of research. Researchers have pro-
posed a variety of methods utilising, for example,
advanced design of experiments (DoE) combined
with simple optimisation strategies1 [55–57], arti-
ficial neural networks [58–60], Bayesian inference2

[61–65] and evolutionary algorithms3.

1https://github.com/DECALIOC/DEcalioc
2https://github.com/chyalexcheng/grainLearning
3https://github.com/uob-positron-imaging-

centre/Coexist

Even with an extremely well-designed DoE, how-
ever, there remains an additional problem to con-
sider: to what extent do the tests truly characterise
the material, and how relevant is a given character-
isation test to the conditions of the real system of
interest? For example, an angle of repose tester
is likely to provide meaningful information regard-
ing a particle’s frictional properties, but is largely
insensitive to the Young’s modulus of a particle.
Similarly, a shear cell may be expected to provide
valuable insight into a particulate’s cohesive prop-
erties, but no meaningful information regarding its
restitution coefficient. As such, it is important to
assure that the characterisation tools used mimic,
as far as possible, the system we wish to ultimately
model – if we wish to model a high-stress environ-
ment, we should expose particles to high stresses in
our calibration experiments; if we wish to model a
rapidly-flowing system, a dynamic characterisation
test should be employed.

Moreover, with indirect calibration the set of
parameters of the contact model are determined
such that the macroscopic response of the system
matches that obtained from external characterisa-
tion of the real material. This allows one to over-
come, to some extent, the limitation of the direct
calibration related to the simplified particle shapes
and size distribution used. Indeed, the informa-
tion on the complex shape of the particles of the
real material will be included and distributed into
the calibrated model parameters. However, this is
at the price of a loss of physical meaning of these
parameters.

A final issue worth mentioning in relation to in-
direct calibration is that of precisely determining
and modelling cohesion. Cohesion, and specifically
the modelling thereof, is a matter of significant im-
portance in the majority of particle-handling indus-
tries, yet one about which our present knowledge is
decidedly lacking; indeed, while we have a reason-
able understanding for the case of spheres, beyond
this we know very little with any certainty. The
‘macro’ cohesion experienced by a given system is
usually the result of an interplay between numerous
particle properties and external forces, including
(but not limited to) van der Waals, liquid bridging
and electrostatics, as well as potentially geomet-
ric effects (e.g. interlocking) [66, 67]. Determining
the individual contributions of these various factors
through indirect calibration methods would be, at
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best, highly challenging. To account for this issue,
DEM practitioners often use simpler (and thus less
physical) force models [68] to ‘lump together’ these
contributions; while these simplified models are ca-
pable of successfully reproducing the dynamics of
a given system, they nonetheless limit the physi-
cal insight one may gain. Nonetheless, in industry
– where the primary aim is typically to accurately
model a given system as opposed to obtaining a
deep understanding of its underlying physics – such
an approach is typically satisfactory.

III. Validation

An important, but unfortunately often overlooked,
aspect of DEM calibration is that even if the set
of parameters determined from an indirect calibra-
tion process can perfectly reproduce the dynamics
of the characterisation tester in which they were
simulated, it does not necessarily hold that they
will be similarly capable of simulating the indus-
trial system of interest. To take an extreme exam-
ple, calibration parameters acquired from a dense,
frictionally-dominated system such as a Schulze
shear cell may not provide accurate simulation of,
say, a dilute, collisionally-dominated vibrofluidised
bed [69]. Even in cases where the dynamics and
mechanics of the characterisation system and in-
dustrial system are more closely matched, however,
full agreement is not guaranteed. As such, in ad-
dition to rigorous calibration, the detailed valida-
tion of DEM simulations is also necessary if we are
to trust the results produced thereby. Though the
best practice for DEM validation is a complex sub-
ject, and as such cannot be given a comprehen-
sive treatment in this short article, one can broadly
state that there exist two key principles to which
one should adhere in order to rigorously validate
DEM simulations:

I. The system used for validation should be as
close to the ‘real’ system of interest as possible
– ideally, validation data should be acquired
from the system itself or, failing that, a scale
model.

II. The comparison of DEM results to experimen-
tal results should be as detailed and multi-
faceted as possible.

Figure 5: Comparison of experimental positron emis-
sion particle tracking (PEPT) data and DEM simula-
tions of a Granutools GranuDrum system. A cell-by-
cell comparison of the discretised velocity and occu-
pancy fields of the simulated and experimental systems
provides a stringent test of the models’ accuracy.

Following from the above discussion, the impor-
tance of principle I is fairly easy to see. Princi-
ple II is slightly more subtle and again, unfortu-
nately, overlooked in many cases. For example,
DEM simulations of mixers or attritor mills are
often ‘validated’ simply by comparing experimen-
tal and simulated measurements of the torque ex-
erted on the mixing blades or impeller [70]. While
disagreement between such measurements can cer-
tainly tell us that our simulation is invalid, agree-
ment does not necessarily mean that the simulation
is valid. Similar to our discussion regarding the
possibility of multiple solutions during indirect cal-
ibration in the preceding section, it cannot be guar-
anteed that a single, scalar measurement can fully
and uniquely capture the dynamics of a complex,
three-dimensional system. For example, a bladed
mixer in a highly dynamic state losing energy pre-
dominantly through energetic inter-particle colli-
sions may, hypothetically, produce the same power
draw as a system undergoing solid-body rotation,
losing energy almost exclusively through frictional
interactions with the system’s sidewalls.

More rigorous validation can be performed by
experimentally imaging the systems of interest, al-
lowing the direct comparison of a variety of quan-
tities and fields (see e.g. Fig. 5). Such imag-
ing thus facilitates a deeper, more detailed, ‘mul-
tipoint’ comparison, and ultimately a significantly
more rigorous validation – while it is highly pos-
sible that two divergent systems may produce
the same impeller torque, the probability that an
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inaccurately-calibrated simulation will, by random
chance, quantitatively reproduce (for example) the
full, three-dimensional velocity vector fields and
density distributions of a given system is decidedly
lower!

In scientific systems, DEM simulations are of-
ten validated against data acquired using optical
imaging techniques such as PIV or PTV [71–74].
However, such techniques are often unsuitable for
the imaging of industry-relevant systems, which
are typically dense, three-dimensional and optically
opaque. For such systems, techniques such as x-
ray tomography or radiography [75,76], or positron
emission particle tracking [77,78], which use highly-
penetrating x-rays or gamma-rays for imaging, are
more typically used. However, even if the technique
itself is suitable, there exist additional potential
pitfalls which must be considered. Most notably,
we must not assume that the quantities and fields
extracted from experimental data (with its inher-
ent limitations on temporal and spatial resolution
and, in some cases, propensity to produce artefacts)
provides ‘perfect’ ground-truth data. For example,
particle tracking experiments may ‘miss’ particle
collisions in between successive frames, leading to
inaccurate measurements of velocity and fluctuant
velocity [79, 80]. More subtly, the finite duration
of experiments inherently requires the partitioning
of the experimental volume into finite regions for
the calculation of such system properties, leading
in turn to errors relating to both limited statis-
tics, and the potential for the under-sampling of
gradients in said properties [79]. In order to max-
imise the rigour of DEM validation, we must match
as closely as possible the properties of our simula-
tions to those of our simulations. Continuing with
our example of particle tracking data, it is impor-
tant, for example, to match the output timestep 4

of simulations to the frame rate of the experimen-
tal imaging methodology, as well as the size of the
sub-regions into which the system is divided 5, and
to calculate velocities indirectly from DEM posi-
tion data, as opposed to using the velocity values
directly output by the simulations [83].

4Note that we refer here to the frequency at which data
is written to file, not that at which integration is performed.

5In the case of coarse-graining [81,82] as opposed to more
conventional binning, one must instead match the coarse-
graining width and other key properties.

IV. Conclusions and outlook

In this article, we have provided a concise overview
of the manners in which discrete element method
(DEM) simulations may be calibrated and vali-
dated, and the practicalities, strengths and weak-
nesses associated with the various approaches dis-
cussed. We have seen that direct calibration can
in some (though not all) cases be time-consuming,
involve a large amount of (often not commercially-
available) testing equipment, and require extremely
careful operation, rendering precise measurements
in some cases unfeasible in the real world. Indirect
measurement techniques, meanwhile, carry the po-
tential to yield multiple solutions (that is to say
they may provide DEM parameter sets that cor-
rectly simulate the test system, but not necessar-
ily the real system), and can become computation-
ally expensive to the point of unfeasibility when at-
tempting to simultaneously calibrate multiple pa-
rameters.

In reality, the optimal approach is perhaps to
perform a mix of direct and indirect calibration –
measure as much directly as can be (feasibly and ef-
ficiently) achieved so as to minimise the dimension-
ality of the parameter space remaining to explore,
and use indirect methods to determine the miss-
ing parameters. The process can then be further
expedited using appropriate design of experiment
methodologies and optimisation tools.

In terms of future outlook, the calibration and
validation methods used by industry (and indeed
academia!) are at present generally somewhat ad
hoc, with different institutes adopting strongly dif-
fering practices. Additional research is required to
determine, for example, the most suitable tools and
combinations of tools for DEM calibration – and
whether the optimal choices vary dependent on the
process to be modelled. Similarly, an established
‘gold standard’ for the validation of DEM simula-
tions, and a workflow through which this may be re-
liably achieved, would be of significant value to the
field. Recently-developed autonomous, machine-
learning and artificial-intelligence-based methods
for the calibration of DEM models show significant
promise, and certainly represent another valuable
area of research.

Finally, while in this article we have focused ex-
clusively on the use of experimental data for the
calibration and validation of DEM simulations, the

140010-8
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use of hyper-realistic physics models such as direct
numerical simulation (DNS) represent another po-
tentially valuable source of ground-truth data for
such efforts.
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